
ON THE CAUCHY PROBLEM FOR THE LAPLACE EQUATION

A.A. Shlapunov

Introduction

Let D be a bounded domain in Rn and S be a closed smooth hypersurface
dividing it into 2 connected components: D+ and D− = D, and oriented as the
boundary of D−.

Problem 1. Under what conditions on functions f0 ∈ C1(S) and f1 ∈ C0(S)
is there a function f ∈ C1(D− ∪ S), which is harmonic in D− and such that

the restrictions on S of f and its normal derivative ∂f
∂n

are equal to f0 and f1

correspondingly ?

It is well known that Problem 1 is unstable. Nevertheless, contrary to Hadamard’s
famous stetement (see [1], p.38) it is often met with in applications. There is a siz-
able literature on the subject (see, e.g. [2]-[6]). Tarkhanov [7] has published a
criterion for the solvability of a larger class of boundary value problems for ellip-
tic systems. In this paper we will describe a simpler (necessary and sufficient)
conditions (which is more easy to verify) for Problem 1 to be solvable.

In §1 we state the criterion. In §2, under the assumption that f is a function in
 L2(D−), we formulate the criterion on the language of special bases which have the
property of double orthogonality (see [8]). In §3, as an example, we construct such
a basis. In §4 we study the case where D = B(x0, R) is a ball in Rn. Finally in
§5, we present Carleman’s formula for the determination of a harmonic function in
D−, given its data on S.

§1. Criterion for solvability of Problem 1

We denote by σn the area of the unit sphere in Rn and by g(y) the standard
(bilateral) fundamental solution of the Laplace operator in Rn:

g(y) =

{

1
(2−n)σn|y|n−2 , n > 2,

1
2π ln|y|, n = 2.

Assume that the functions f0, f1 are summable on S. Then the corresponding
Green’s integral is well defined:

F(x) =

∫

S

(

f0(y)
∂g(x− y)

∂ny
− f1(y)g(x− y)

)

ds(y) (x ∈ D\S).

It is clear that F is harmonic everywhere outside of S; let F± = F|D± .
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2 A.A. SHLAPUNOV

Lemma 1.1. Let S ∈ C2, f0 ∈ C1 and f1 ∈ C0 be summable functions on S. Then

the function F+ continuously extends to D+∪S together with its first derivatives if

and only if the function F− continuously extends to D− ∪ S together with its first

derivatives.

Proof. We will use the fact that there exist a smooth function f̂ given in a neigh-

bourhood of S in D such that f̂|S = f0, ∂f̂
∂n |S

= f1 (see [9], Lemma 29.5).

If x0 ∈ S, ν(x0) is the unit normal vector to S at the point x0 and |α| ≤ 1 then
(see [9], Lemma 29.5)

(1.1) lim
ε→0

(∂αF)(x0 − εν(x0)) − ∂αF(x0 + εν(x0))) = ∂αf̂(x0),

where the limit is uniform on compact subsets in S.
Let, for instance, F− continuously extends to D− ∪ S together with its first

derivatives. We fix a multi-index |α| ≤ 1. Then

lim
ε→0

∂αF(x0 + εν(x0)) = ∂αF(x0) − ∂αf̂(x0).

Let us define F+ in the following way:

∂αF+(x) =

{

∂αF+(x), x ∈ D+,

∂αF−(x) − ∂αf̂(x), x ∈ S.

Let us show that ∂αF+ is continuous in D− ∪ S. We fix a point x0 ∈ S and
E > 0. Because ∂αF+ is continuous on S, there is δ0 > 0 such that, for x1 ∈ S
with |x1 − x0| < δ0, we have

|∂αF+(x1) − ∂αF+(x0)| < E/2.

Decreasing δ0 (if it is necessary) we can consider K = B(x0, δ0) ∩ S as a compact
subset of S.

Since the hypersurface S ∈ C2, we can choose 0 < δ < δ0 in such a way that
every point x ∈ D+ ∩ B(x0, δ) is represented in the form x = x1 + εν(x1) where
x1 ∈ S and ε = dist(x, S). Then ε < δ and |x0 − x1| ≤ |x0 − x| + |x − x1|, i.e.
x1 ∈ K.

Using the fact that the limit in (1.1) is uniform on compact subsets of S and
decreasing δ (if it is necessary) we obtain that, for x1 ∈ K, 0 < ε < δ the following
inequality holds:

|∂αF+(x1 + εν(x1)) − ∂αF+(x1)| < E/2.

Let now x ∈ D+ ∩ B(x0, δ). Then, for some x1 ∈ K and 0 < ε < δ we have
x = x1 + εν(x1). Hence

|∂αF+(x0) − ∂αF+(x)| ≤ |∂αF+(x0) − ∂αF+(x1)|+

+|∂αF)+(x1 + εν(x1)) − ∂αF+(x1)| < E.

Therefore F+ continuously extends to D+ ∪S together with its first derivatives,
if F− continuously extends to D− ∪S together with its first derivatives. The proof
is complete. �
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Theorem 1.2. Let S ∈ C2, f0 ∈ C1 and f1 ∈ C0 be summable functions on S.

Then, for Problem 1 to be solvable, it is necessary and sufficient that the integral

F+ harmonically extends from D+ to the domain D.

Proof. Necessity. Suppose that there exists a function f that solves Problem 1.
define in D the function

(1.2) Φ(x) =

{

F+(x), x ∈ D+

F− − f(x), x ∈ D−.

For any subdomain S1 ⊂ S ther eis some domain D1 b D in D− with a piecewise-
smooth boundary such that S1 ⊂ ∂D1. Clearly, f ∈ C1(D1) is harmonic in D1 and
so, by Green’s formula,

f(x) =

∫

∂D1

(

f(y)
∂g(x− y)

∂ny
−

∂f(y)

∂ny
g(x − y)

)

ds(y) (x ∈ D1).

Hence we have, in D−,

Φ(x) = F−(x) − f(x) =

∫

S\S1

(

fo(y)
∂g(x− y)

∂ny
− f1(y)g(x− y)

)

ds(y)+

(1.3) +

∫

∂D1\S1

(

f(y)
∂g(x− y)

∂ny
−

∂f(y)

∂ny
g(x− y)

)

ds(y) (x ∈ D1).

The terms in the right hand side of (1.3) are harmonic functions in a neighbour-
hood of S1, and therefore, since S1 is arbitrary, F− extends smoothly to D− ∩ S.

Further, it follows from Lemma 1.1 that F+ also extends smoothly to D+ ∪ S.
Therefore, the restriction Φ± to D± of φ extends smoothly to D±∪S. In addition,
by (1.1), if x0 ∈ S, then

lim
ε→0

Φ−(x0 − εν(x0)) − Φ+(x0 + εν(x0)) = 0,

lim
ε→0

∂Φ−

∂n
(x0 − εν(x0)) −

∂Φ+

∂n
(x0 + εν(x0)) = 0.

Thus, we conclude that Φ can be extended smoothly to the whole domain D by
defining Φ = F− − f on S.

By Morera’s theorem for harmonic functions, it follows that a function Φ that
is smooth in D and harmonic in D− and in D+ is also harmonic in D. By (1.2) Φ
is the desired harmonic extension of F+ to D.

Sufficiency. Let F+ be extendable to a harmonic function in D, call it Φ. Then,
by Lemma 1.1, F− extends smoothly to D−∪S. Define f(x) = F−−Φ(x) (x ∈ D−).
Using formula (1 .1) as in the proof of the necessity, we see that the restriction to

S of f and its normal derivative ∂f
∂n equal f0 and f1, respectively. �
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Example 1.3. Let S be a piece of the hyperplane {xn = 0} in Rn. Then, if
f0 = 0, the function F) is even with respect to xn 6= 0, and, if f1 = 0, it is odd.
Therefore, if one of the functions fj (0 ≤ j ≤ 1) is zero, the integrals G(⊕fj)±

extend harmonically across S simultaneously. Because their difference on S is
equal to f0, and the difference of their normal derivatives is equal to f1, Theorem
1.2 implies the known Hadamard’s statement (see [17]. p. 31). Namely, if one of
the functions fj (0 ≤ j ≤ 1) is zero, Problem 1 is solvable only if another function
is real analytic.

Remark 1.4. The fact that D ⊂ Rn is a bounded domain is essential in this
section only for n = 2, because of the construction of the fundamental solution of
the Laplace operator.

§2. Solvability of Problem 1 in L2 in a domain in terms of bases with double orthogonality

In this section we will assumed that the surface S can be extended smoothly to
a neighbourhood of D, and that f0, f1 ∈ L2(S) are diven functions on S.

Let G b D+ be a domain with piecewise-smooth boundary such that the com-
plement of G has no compact connected components in D. Let h2(G) denote the
space of harmonic L2(G)-functions, with induced topology.

We consider a system of functions {bν} in h2(G), possessing special properties:
{bν} is an orthonormal basis in h2(D) and an orthogonal basis in h2(G). It was
shown in [8] that under the conditions above such bases with double orthogonality
exists, and a method for their construction was established.

We will use the system {bν} to solve the following problem.

Problem 1′. Under what conditions on functions f0 ∈ C1(S) and f1 ∈ C0(S) is

there a function f ∈ C1(D− ∪ S) ∩ h2(D−), such that the restrictions on S of f

and its normal derivative ∂f
∂n are equal to f0 and f1, respectively ?

Clearly, the restriction to G of F+ belongs to h2(G). Let cν denote the Fourier
coefficients of F+ with respect to the orthogonal system {bν}. Since G and S are
disjoint, these coefficients can be written in the following form:

cν =

(
∫

G

F+(x)bν(x)dx

∖(
∫

G

|bν(x)|2dx

)

=

=

∫

S

(

f0(y)
∂

∂ny

∫

G
g(x − y)bν(x)dx
∫

G
|bν(x)|2dx

− f1(y)

∫

G
g(x − y)bν(x)dx
∫

G
|bν(x)|2

)

ds(y)

Theorem 2.1. Let S ∈ C2. Then Problem 1′ is solvable if and only if the series
∑∞

ν=1 |cnu|2 is convergent.

Proof. Necessity. Suppose that there exist a solution of Problem 1′. By the con-
ditions we have imposed on S, L2(S) ⊂ L1(S). Therefore it follows from Theorem
1.2 that the function F+ extends to a harmonic function in D, say Φ. In addition,
it was proved in Theorem 1.2, that the extension Φ has the form

Φ(x) =

{

F+(x), x ∈ D+

F− − f(x), x ∈ D− ∪ S.

Now, due to the conditions imposed on S, we may assume that D− is contained in
a domain D1 with smooth boundary such that S ⊂ D1. Since the extension of f0 by
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zero to ∂D1\S belongs to L2(D1), it follows from results of [10] that F− ∈ L2(D1);
in particular F− ∈ L2(D−). Arguing similarly we obtain that F+ ∈ L2(D+). Thus
Φ ∈ h2(D) and the expansion F+(x) =

∑∞
ν=1 cnubν(x) still converges in the norm

of L2(D). By Bessel’s inequality,
∑∞

ν=1 |cnu|2 ≤ ‖Φ‖L2(D) < ∞.

Sufficiency. Suppose that the series
∑∞

ν=1 |cnu|2 is convergent. Then, by the
Riesz-Fischer theorem, there is a function Φ ∈ h2(D) such that Φ(x) =

∑∞
ν=1 cnubν(x).

Clearly, Φ is a harmonic extension of F+. By Theorem 1.2, the function f(x) =
F−(x) − Φ(x) (x ∈ D−) is a solution of Problem 1. It remains to observe that, by
arguments above, F− ∈ L2(D), and hence f ∈ h2(D−). This completes the proof.
�

§3. Example of basis with double orthogonality

Let O = BR be the ball with centre at zero and radius 0 < R < ∞, and S be a
closed smooth hypersurface dividing it into 2 connected components (D+ and D−)
in such away that 0 ∈ D+, and oriented as the boundary of D−. In this case we
can construct a basis with double orthogonality in the subspace of L2(BR), which
consists of harmonic functions in a rather explicit form.

Let {h
(i)
ν } be a set of homogeneous harmonic polynomials which form a complete

orthonormal system in L2(∂B1) where ν is the degree of homogeneity, and i is an
index labelling the polynomials of degree ν belonging to the basis. The size of
the index set for i as a function of ν is known, namely, 1 ≤ i ≤ J(ν) where

J(ν) = (n+2ν−2)(n+ν−3)!
ν!(n−2)!

for n > 2 and ν = 0. If n = 2 then, obviously, J(0) = 1,

J(ν) = 2 for ν ≥ 1. Using the system {h
(i)
ν } we will construct the basis with double

orthogonality.
In the folowing lemma H is a separable Hilbert space with an orthonormal basis

{bν}.

Lemma 3.1. Let h = h(α) be a continuous map of a topological space A to H.

Then, for any element h(α), the Fourier series converges uniformly with respect to

α on compact subsets of A.

Proof. Let (., .) be the scalar product and ‖h‖ = (h, h)1/2 be a norm in H (h ∈ H).
We fix arbitrary α ∈ A and denote by cν(α) the Fourier coefficients of the vector

h(α) with respect to the system {bν}: cν(α) = (h(α), bν). Then for any ε > 0 there
is N > 0, N = N(ε, α), such that for every m ≥ N the following inequality holds:

(3.1) ‖h(α) −
m
∑

ν=1

cν(α)bν‖ =

(

‖h(α)‖2 −
m
∑

ν=1

|cν(α)|2

)1/2

≤ ε.

Since the map h and the scalar product (., .) are continuous, there is a neighbour-
hood VN (α) of the point α in which estimate (3.1) still holds for m = N . However,
if m increases, the right hand side of (3.1) can only decrese. Therefore inequality
(3.1) holds in the neighbourhood VN (α) for all m ≥ N .

Now, for any compact K ⊂ A, we can choose N1 = N1(K) such that estimate
(3.1) holds for all α ∈ K because we can cover the compact by a finite number of
neighbourhoods of the type VN (α). The proof is complete. �
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Lemma 3.2. The fundamental solution of the Laplace operator can be expanded

as follows:

(3.2) g(x − y) = g(y) −
∞
∑

ν=1

J(ν)
∑

i=1

h
(i)
ν (x)

n + 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
.

where the series converges together with all the derivatives uniformly on compact

subsets of the cone K = {(x, y) ∈ Rn × Rn : |y| > |x|}.

Proof. Because of the homogeneity of the polynomial h
(i)
ν , Euler formula implies

that

(3.3)
n
∑

m=1

∂h
(i)
ν

∂xm
xm = νh(i)

ν ,
n
∑

m=1

∂2h
(i)
ν

∂xm∂xj
xm = (ν − 1)

∂h
(i)
ν

∂xj
xj .

We denote by Y
(i)
ν the restriction of the polynomyal h

(i)
ν to ∂B1. Then {Y

(i)
ν } is

a basis in L2(∂B1) consisting of spherical functions.
Let x ∈ B1 be fixed. We represent ϕn(x − y) by the Fourier series in L2(∂B1).

Namely,

ϕn(x − y) =
∑

ν,i

c(i)
ν (x)Y

(i)
ν ,

where c
(i)
ν (x) are the Fourier coefficients of ϕn(x − y) with respect to the system

{Y
(i)
ν }.
Let us consider first the case where n > 2. Then

c(i)
ν (x) =

1

(2 − n)σn

∫

∂B1

|x − y|2−nY (i)
ν (y)dσ(y),

where dσ is the volume form on the sphere ∂B1. We rewrite the coefficients in the
following way:

(3.4) c(i)
ν (x) =

1

(2 − n)

∫

∂B1

P(x, y)
1 − 2 < x, y > +|x|2

1 − |x|2
Y (i)

ν (y)dσ(y).

Here < x, y >=
∑n

m=1 xmym and

P(x, y) =
1

σn

1 − |x|2

|x − y|n

is the Poisson kernel for the unit ball in R
n.

It is not difficult to see that the function

(3.5) F = xmh(i)
ν (x) −

1

n + 2ν − 2

∂h
(i)
ν

∂xm
(|x|2 − 1)

is the harmonic extension into the ball B1 of the function ymY (i)ν given on ∂B1.
Really, using (3.3) and harmonicity of h(i)ν we have:

∆nF = 2
∂h

(i)
ν

∂xm
(x) −

1

n + 2ν − 2

∂h
(i)
ν

∂xm
(x)∆n(|x|2 − 1)+
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+
2

n + 2ν − 2

n
∑

j=1

∂2h
(i)
ν

∂xm∂xj
(x)

∂

∂xj
(|x|2 − 1) =

= 2
∂h

(i)
ν

∂xm
(x) −

2

n + 2ν − 2



n
∂h

(i)
ν

∂xm
(x) + 2

n
∑

j=1

∂2h
(i)
ν

∂xm∂xj
(x)xj



 = 0.

Using the Poisson formula and equalities (3.3), (3.4) and (3.5) we obtain

c(i)
ν (x) =

1

(2 − n)

1 + |x|2

1 − |x|2

∫

∂B1

P(x, y)Y (i)
ν (y)dσ(y)−

−
2

(2 − n)

n
∑

m=1

xm

1 − |x|2

∫

∂B1

P(x, y)ymY (i)
ν (y)dσ(y) = −

h
(i)
ν (x)

n + 2ν − 2
.

Therefore

ϕn(x − y) = −
∞
∑

ν=0

J(ν)
∑

i=1

h
(i)
ν (x)Y

(i)
ν (y)

n + 2ν − 2
,

and Lemma 3.1 implies that this series converges in the norm of the space L2(∂B1),
uniformly with respect to x on compact subsets of the ball B1.

The harmonic extension with respect to y leads us to the equality

|y|2−nϕn(x −
y

|y|
) = −

∞
∑

ν=0

J(ν)
∑

i=1

h
(i)
ν (x)h

(i)
ν (y)

n + 2ν − 2
,

where the series converges absolutely and uniformly with respect to x and y inside
the ball B1.

Applying to this equality the Kelvin transformation with respect to y we see
that

(3.6) ϕn(x − y) = −

∞
∑

ν=0

J(ν)
∑

i=0

h
(i)
ν (x)

(n + 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
.

It is clear that series (3.6) converges uniformly with respect to x (inside the ball
B1) and y (outside B1). Let us show that it is converges uniformly on the set of
the following type

{(x, y) ∈ R
n × R

n :
|y|

|x|
≥ δ1, and |y| ≥ δ0}

where δ1 > 1, δ0 > 0. We choose γ > 1 such that γ2 < δ1. Then

J(ν)
∑

i=0

h
(i)
ν (x)

(n + 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
=

=

(

γ

|y|

)n−2 J(ν)
∑

i=0

h
(i)
ν ( x

γ|x| )

(n + 2ν − 2)

h
(i)
ν ( y

γ|y|)
(

γ2|x|
|y|

)ν

|y|n+2ν−2
.
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By the choice of γ we have:
∣

∣

∣

∣

x

γ|x|

∣

∣

∣

∣

=
1

γ
< 1,

∣

∣

∣

∣

γy

|y|

∣

∣

∣

∣

= γ > 1,
γ2|x|

|y|
≤

γ2

δ1
< 1.

Using the criterion of Abel for the uniform convergence of series, we see that series
(3.6) uniformly converges on subsets of the type above.

If ν = 0 then J(0) = 1 and h
(1)
0 = const. Because the system {h

(i)
ν } is orthonor-

mal we conclude that |h
(1)
0 |2 = 1

σn

. Therefore

ϕn(x − y) =
1

(2 − n)σn|y|n−2
−

∞
∑

ν=1

J(ν)
∑

i=1

h
(i)
ν (x)

(n + 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
.

In the case n = 2, we have

c(i)
ν (x) =

1

2π

∫

∂B1

Y (i)
ν (y)ln|x− y|dσ(y).

However, from the discussion above, we see that, for ν ≥ 1 and m = 1, 2,

∂c
(i)
ν

∂xm
(x) =

1

2π

∫

∂B1

xm − ym

|y − x|2
Y (i)

ν (y)dσ(y) =
−1

2ν

∂h
(i)
ν

∂xm
(x).

Moreover, because ν ≥ 1, c
(i)
ν (0) = h

(i)
ν (0) = 0. Hence

c(i)
ν (x) = −

h
(i)
ν (x)

2ν
(ν ≥ 1)

If ν = 0 then

∂c
(1)
1

∂xm
(x) =

h
(1)
0

2π

∫

∂B1

xm − ym

|y − x|2
Y (i)

ν (y)dσ(y) =

=
h

(1)
0

2ν(1 − |x|2)

(

xm

∫

∂B1

P(x, y)dσ(y)−

∫

∂B1

ymP(x, y)dσ(y)

)

= 0 (m = 1, 2).

Arguing as before we obtain:

1

2π
ln|x − y| =

1

2π
ln|y| − −

∞
∑

ν=1

J(ν)
∑

i=1

h
(i)
ν (x)

(n + 2ν − 2)

h
(i)
ν (y)

|y|n+2ν−2
.

Finally, because the summands in decomposition (3.2) are harmonic with re-
spect to x and y in K, the Stiltjes-Vitali theorem yields that series (3.2) converges
uniformly together with all the derivatives on compact subsets of the cone K. �

A similar decomposition of the fundamental g(x − y) in Cn maybe found for in
[12]).

Remark 3.3. The statement that series (3.2) converges uniformly together with
all the derivatives on compact subsets of the cone K may also be deduced from the

following estimate of a homogeneous harmonic polinomial h
(i)
ν of degree ν on the

sphere ∂B (see [11]):

max
|y|=1

|h(i)
ν | ≤ const(n)νn/2−1‖h(i)

ν ‖L2(∂D1).
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Lemma 3.4. For any 0 < R < ∞

(h(i)
ν , h(j)

µ )L2(BR) =

{

Rn+2ν/(n + 2ν) ν = µ, and i = j,

0, ν 6= µ or j 6= i.

Proof.
∫

BR

h(i)
ν (x)h

(j)
µ (x)dx =

∫ R

0

dr

∫

|x|=r

h(i)
ν (x)h

(j)
µ (x)dσ(x) =

=

∫ R

0

rν+µ+n−1dr

∫

|x|=1

h(i)
ν (x)h

(j)
µ (x)dσ(x) =

{

Rn+2ν/(n + 2ν) ν = µ, and i = j,

0, ν 6= µ or j 6= i. �

Lemma 3.5. For any ball B centered at zero, the system {h
(i)
ν } is complete in the

space h2(B).

Proof. Let B an arbitrari ball centered at zero and f ∈ h2(B). It is known that
f ∈ h2(B) can be approximated in the norm of the space L2(B) by functions
fN (N = 1, 2, ...), which are harmonic in a neighbourhood of the ball B (see,
for example, [79], ch. 4). Because, for every (N = 1, 2, ...), the function fN is

harmonic in a neighbourhood of a (larger than B) ball B̂, it can be represented

in the ball B̂ by Green’s formula. Replacing the fundamental solution g(x − y)
in this Green’s formula by decomposition (3.2), we obtain a sequence {fNM} of

finite linear combinations of polynomials h
(i)
ν which converges to fN in the norm of

L2(B). Taking the diagonal sequence {fNN} we obtain the desired approximation
of f in the norm of L2(B). The proof is complete. �

Theorem 3.6. For any 0 < r < ∞ the system {Q
(i)
ν } = {

√

n+2ν
rn+2ν h

(i)
ν } is an or-

thonormal basis in h2(Br) and an orthogonal basis in h2(B) where B is an arbitrary

ball with centre at zero.

Proof. Follows immediately from Lemmata 3.4, 3.5. �

§4. Solvability criterion for a ball

Let D = BR be a ball in Rn and S be a closed hypersurface in D, dividing it into 2
connected components D+ and D−, with the origin in D+. We fix 0 < r < dist(0, S)
and set Ω = Br so that Ω b O. In order to obtain the Fourier coefficients for the
section F with respect to this basis in h2(Br) it is sufficient to know the Fourier
coefficients for the fundamental solution ϕn(x − y) (see Lemma 2.8.5.).

Our principal results will be formulated in the language of the coefficients

k(i)
ν =











−1
n+2ν−2

∫

S

(

f0(y) ∂
∂n

(

h
(i)
ν (y)

|y|n+2ν−2

)

− f1(y) h
(i)
ν (y)

|y|n+2ν−2

)

ds(y) (ν = 1, 2, ...),

∫

S

(

f0(y)∂ϕn(y)
∂n

− f1(y)ϕn(y)
)

ds(y), ν = 0.
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Theorem 4.1. Let f0, f1 ∈ L1(S). Then for Problem 2.8.1 to be solvable, it is

necessary and sufficient that

(4.1) lim sup
ν→∞

max
i

ν

√

|k
(i)
ν (y)| ≤

1

R

Proof. Necessity. Let Problem 1 be solvable. Then Theorem 1.2 implies that the
function F+ on the domain D+ harmonically extends to a function F ∈ S∆n

(BR).
We fix 0 < r < R. It is clear that the components of the solution F belong to

the space S2
∆n

(Br). Therefore, from Theorem 3.6, they are represented by their

Fourier series with respect to the system {
√

n+2ν
rn+2ν h

(i)
ν }

(4.2) F(x) =
∑

i,ν

c(i)
ν (r)

√

n + 2ν

rn+2ν
h(i)

ν (x) (x ∈ Br).

Bessel’s inequality implies that the series
∑

i,ν |c
(i)
ν (r)|2 converges. On the other

hand, in the ball Ω, from Lemma 3.2, we obtain the decomposition

(4.3) F(x) =
∑

i,ν

k(i
ν h(i

ν (x) (x ∈ Ω).

Comparing (4.2) and (4.3) we find that

(4.4) c(i
ν (r) =

√

rn+2ν

n + 2ν
k(i

ν (ν = 1, 2, ...).

Hence for any 0 < r < R

∑

i,ν

|k(i)
ν (r)|2

rn+2ν

n + 2ν
= rn

∞
∑

ν=0





J(ν)
∑

i=1

|k
(i)
ν (r)|2

n + 2ν



 r2ν < ∞

Using the Cauchy-Hadamard formula for the radius of the convergence of a power
series we obtain

lim sup
ν→∞

max
i

ν

√

|k
(i)
ν (y)| ≤ lim sup

ν→∞





J(ν)
∑

i=1

|k
(i)
ν (r)|2

n + 2ν





1/2ν

≤
1

r

Since 0 < r < R is arbitrary then condition (4.1) holds, which was to be proved.
Sufficiency. If condition (4.1) holds then the Cauchy-Hadamard formula and the

estimate J(ν) < const νn−2 implies that the series
∑

i,ν |k
(i)
ν (r)|2 rn+2ν

n+2ν
converges

for any 0 < r < R. The Riesz-Fisher theorem implies that there exists a section F
(of the bundle E|Br

) with the components from S2
∆n

(Br) such that

F(x) =
∑

i,ν

√

rn+2ν

n + 2ν
k(i

ν

√

n + 2ν

rn+2ν
h(i

ν (x) =
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=
∑

i,ν

k(i
ν h(i

ν (x)

where the series converges in the norm of the space L2(EBr
). It is easy to see that

in the ball Ω the section F coincides with F . Therefore it is a harmonic extension
of Green’s integral F from D+ to the whole domain D.

Now using Theorem 1.2 we conclude that Problem 1 is solvable. This proves the
theorem. �

Let us assume now that the surface S can be axtended smoothly to a neighbour-
hood of D. Then we have

Corollary 4.2. Let S ∈ C2 and let f0, f1 ∈ L2(S). Then for Problem 1 to be

solvable, it is necessary and sufficient that the series
∑

ν,i |a
(i)
ν | R2ν

n+2ν is convergent.

Proof. Follows immediately from Theorems 3.6, 2.1 and formula (4.4). �

§5. Carleman’s formula

Bases with double orthogonality can be used to prove Carleman’s formula for de-
termination of a harmonic function f in D− by its Cauchy data on S. To illustrate,
let us consider a ball in Rn.

For each number N = 1, 2... we consider the kernel C(N)(x, y) defined, for all
y 6= 0 off the diagonal {x = y}, by the equality

C(N)(x, y) = g(x − y) − g(y) +
N
∑

ν=1

J(ν)
∑

i=1

h
(i)
ν (x)

n + 2ν − 2

h
(i)
ν (y)

|y|n+2ν−2
.

Proposition 5.1. For any number N = 1, 2, ..., the kernel C(N) is harmonic with

respect to x and y for all y 6= 0 off the diagonal {x = y}.

Proof. Follows from the properties of the g(x−y) and the polynomials h
(i)
ν (y). �

Theorem 5.2. For any harmonic function f ∈ Cloc(D∪S) whose restriction to S
is summable there, the following formula holds

(5.1) f(x) = lim
N→∞

∫

S

(

f(y)
∂C(N)(x, y)

∂ny
−

∂f(y)

∂ny
C(N)(x − y)

)

ds(y) (x ∈ D−).

Proof. Let fo and f1 stands for the restrictions to S of f and its notmal derivative,
respectively. Since f is a solution of Problem 1, it follows from Theorem 1.2 that
F+ has harmonic extension to the ball D, say Φ. It is evident from Theorem 1.2

that the function f̂ = F− − Φ is also a solution of Problem 1. It is readily seen
that in that case f̂ coincides with f in D−.

Further, for any 0 < r < R we have Φ ∈ h2(Br). Since any point x ∈ D− is also
in some ball smaller than BR, say Br, it follows from formula (4.4) that

f(x) = F−(x) − Φ(x) = F−(x) −
∑

ν,i

c(i)
ν Q(i)

ν (x) =
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F−(x) −
∑

ν,i

a(i)
ν h(i)

ν (x) = F−(x) − lim
n→∞

N
∑

ν=0

J(ν)
∑

i=1

a(i)
ν h(i)

ν (x).

The limit on the right hand side exists in the norm of L2(Br) in any ball Br

(0 < r < R). In particular, by Stieltjes-Vitali theorem the convergence is uniform
together with all derivatives on compact subsets of Br.

Since the point zero is not on S, by assumption of the theorem, we have

f(x) =

∫

S

(

f(y)
∂g(x− y)

∂ny
−

∂f(y)

∂ny
g(x − y)

)

ds(y)−

f(x) −

∫

S

(

f(y)
∂g(y)

∂ny
−

∂f(y)

∂ny
g(y)

)

ds(y)+

lim
N→∞

N
∑

ν=0

J(ν)
∑

i=1

∫

S



f(y)
∂

∂ny

h
(i)
ν (y)

|y|n+2ν−2
−

∂f(y)

∂ny

h
(i)
ν (y)

|y|n+2ν−2



 ds(y)
h

(i)
ν (x)

n + 2ν − 2

= lim
N→∞

∫

S

(

f(y)
∂C(N)(x, y)

∂ny
−

∂f(y)

∂ny
C(N)(x − y)

)

ds(y) (x ∈ D−).

�

Remark 5.3. As one can see from the proof of Theorem 5.2, the convergence of
the limit in (5.1) is uniform on compact subsets of the domain D− together with
all its derivatives.

Carleman’s formula was established in [6] for specific choice of D−, bounded by
part of the surface of the cone K and a smooth piece of S in the interior of K.

In conclusion I would like to thank Prof. N.N. Tarkhanov for his guidance in the
preparation of this paper.
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