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Abstract. We show how the multiple application of the formal Cauchy-

Kovalevskaya theorem leads to the main result of the formal theory of overde-

termined systems of partial differential equations. Namely, any sufficiently
regular system Au = f with smooth coefficients on an open set U ⊂ Rn ad-

mits a solution in smooth sections of a bundle of formal power series, provided
that f satisfies a compatibility condition in U .
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Introduction

In this paper we deal with formal theory of overdetermined equations, although
the case of determined equations is not excluded. By an overdetermined operator
is meant any map A : U → V for which there exists a non-zero map B : V → W
with the property that BA = 0. Then for the inhomogeneous equation Au = f
to be solvable it is necessary that Bf = 0. The formal theory of overdetermined
equations consists in constructing a “smallest” map B with this property, i.e., any
other map C : V → Z satisfying CA = 0 should act through B. This means,
C = QB for some map Q : W → Z. If exists, such a map B is called compatibility
operator for A.
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The existence of a compatibility operator for A is by no means obvious. If
exists, B is not unique, for the composition C = QB with any invertible map
Q : W → Z is a compatibility operator for A. The proper algebraic framework
for constructing a compatibility operator is given by the concept of a resolution
of a module in homological algebra. While every module possesses a resolution by
free modules, these latter need not be finitely generated, cf. [ML63]. Hence, the
compatibility operator B guaranteed by homological algebra may be very crude. For
linear differential equations Au = f this approach gives satisfactory results only in
two cases. The first of the two is the case of operators A with constant coefficients,
where the question is settled by the Hilbert syzygy theorem. The second one is the
case of operators A with real analytic coefficients, where the module is Noetherian,
cf. [Bjo93].

In the case of differential operators A with smooth coefficients the formal theory
was developed in the framework of differential topology, mostly due to the coho-
mological approach of Spencer, cf. [Spe69]. A central concept of this theory is
the notion of sufficiently regular system of differential equations. Although the
sufficient regularity property is verified within linear algebra, it is awkward. Each
sufficiently regular system possesses a compatibility operator, which is a partial dif-
ferential operator with smooth coefficients constructed in the framework of linear
algebra, see [Spe69], [Pom78], [Tar95], etc.

Having granted a suitable compatibility operator for A, the question arises
whether the condition Bf = 0 is not only necessary but also sufficient for the
solvability of Au = f . The ∂̄ -problem in complex analysis shows that it is not
the case in general. The solvability fails to take place even modulo finite dimen-
sional subspaces of V unless the manifold is strictly pseudoconvex. However, for
local operators A we can localise the problem, thus using the advantage of formal
solvability.

By the formal solvability is actually meant the solvability in smooth sections
of the infinite dimensional bundle of formal power series. Spencer and his school
used for thus purpose the bundles of finite order jets, perhaps to not leave the
standard setting of classical analysis, see [Spe69]. The bundle of formal power series
has much in common with very popular nowadays deformation quantisation, cf.
[Fed96]. In particular, the differential geometry of this bundle is essentially raised
by a connection whose meaning is very transparent. Namely, this connection vanish
if and only if the section of the formal series bundle comes from a section of the
vector bundle in question. This crucial property readily yields that the connection
commutes with every differential operator on the bundle of formal power series.
This way the formal analysis of the inhomogeneous equation Au = f readily leads
to what is known as Spencer’s first resolution of a sufficiently regular differential
operator A.

Spencer’s first resolution can be actually written for an inhomogeneous system
Au = f with arbitrary differential operator A, which is not necessarily sufficiently
regular. Since the connection on the bundle of formal power series is flat, i.e., its
curvature is zero, Spencer’s first resolution is a complex. Its cohomology bears
information on the solvability of Au = f , which is well understood in the case
of sufficiently regular systems. If the system fails to be sufficiently regular, the
complex in question lacks crucial regularity properties. Still the construction of a
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homotopy operator for Spencer’s first resolution remains of central interest in the
theory of overdetermined systems.

This work was intended as an attempt at motivating the role that is played
by the homotopy operator for the existence theory, i.e., the local solvability of
overdetermined systems.

1. The bundle of formal power series

Let X be a smooth manifold of dimension n. Given a smooth vector bundle
E over X and an open set U ⊂ X , we write E(U,E) for the space of all smooth
sections of E over U .

Sections u, v ∈ E(U,E) are called equivalent at a point p ∈ U if the difference
u − v vanishes up to the infinite order at p. The classes of equivalent sections of
E at p form a vector space which is denoted by Jp(E). If E ∼= U × Ck is trivial
over U and x = x(p) are local coordinates in U , then u and v are equivalent at p
if and only if ∂α(u− v) = 0 at x for all multi-indices α ∈ Nn

0 . Here, N0 stands for
N ∪ {0}, and

∂α =
( ∂

∂x1

)α1

. . .
( ∂

∂xn

)αn

.

We can thus identify the equivalence class of a section u ∈ E(U,E) at p with the
sequence

(uα(x))α∈Nn
0

where uα(x) = ∂αu(x)/α!. If y = y(p) is another local chart about p, then the
equivalence class of u at p is represented by (uα(y))α∈Nn

0
where uα(y) = ∂αu(y)/α!.

By chain rule,

uα(y) =
∑

|β|≤|α|

tα,β(y)uβ(x) (1.1)

where tα,β(y) is an infinite lower triangle matrix whose entries are monomials of
∂γ

y x1, . . . , ∂γ
y xn with |γ| ≤ |α| − |β|+ 1. Under the change of local frame in E the

representation of the equivalence class of u ∈ E(U,E) at p transforms similarly to
(1.1), with tα,β(y) being derivatives of the transition matrix of E of order |α| − |β|.
We have thus given the structure of smooth vector bundle of infinite rank over X
to the disjoint union

J(E) :=
⊔

p∈X
Jp(E).

The bundle J(E) is said to be the bundle of formal power series with coefficients
in E over X . It just amounts to the bundle of infinite order jets of sections of the
bundle E over X , denoted by J∞(E). The formal theory of [Spe69] makes use of
the bundles Js(E) of jets of finite order s ∈ N0 rather than of J∞(E). The bundle
J0(E) is identified with E.

If U is a coordinate neighbourhood in X , such that E is trivial over U , then any
section u of Js(E) has representation

u(x, z) =
∑
|α|≤s

uα(x)zα (1.2)

in U , where x ∈ U , z ∈ Cn and uα are functions in U with values in C`. The
variable z is invariantly interpreted as a vector of the complexified tangent space
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for X at the point x. By the very definition, u is smooth if all the uα are smooth
for some family {U} covering X .

For r ≤ s, we denote by πr,s the natural projection πr,s : Js(E) → Jr(E). In
local coordinates we get

πr,s
( ∑
|α|≤s

uα(x)zα
)

=
( ∑
|α|≤r

uα(x)zα
)
.

The map js : E(X , E)→ E(X , Js(E)) that associates with a section u ∈ E(X , E)
its s -jet is a differential operator on X . In a coordinate neighbourhood U in X ,
over which E is trivial, it has the form

jsu (x, z) =
∑
|α|≤s

∂αu(x)
α!

zα

for (x, z) ∈ U × Cn. Also in the case s = ∞ this operator is local, i.e., satisfies
supp jsu ⊂ suppu for all u ∈ E(X , E).

2. Compatibility operators

Given any smooth vector bundles E and F over X , we write Diffa(X ;E,F )
for the space of all linear partial differential operators A of order ≤ a mapping
sections of E to those of F . For any coordinate neighbourhood U with coordinates
x = (x1, . . . , xn) in X , such that both E and F are trivial over U , such an operator
takes the form

A =
∑
|α|≤a

Aα(x)∂α (2.1)

where Aα are (`× k)-matrices of smooth functions on U , k, ` being the ranks of E
and F , respectively.

The operator A is said to be overdetermined if there exists a non-zero operator
B ∈ Diffb(X ;F,G) satisfying B ◦A ≡ 0.

Definition 2.1. An operator B ∈ Diffb(X ;F,G) is called a compatibility operator
for A if B ◦ A ≡ 0 and for each operator C ∈ Diffc(X ;F,H) with C ◦ A ≡ 0 there
is an operator Q ∈ Diffq(X ;G, H), such that C = Q ◦B.

In order to treat the compatibility operator for A we invoke the theory of D -
modules, see [Mal04], [Bjo93].

Denote by E(X )[D] the ring of scalar differential operators with smooth coeffi-
cients on X . By the product of two operators in E(X )[D] is meant their composition,
which is certainly non-commutative.

Write E(X )[D]` for the free finitely generated left E(X )[D] -module with the
standard addition ‘+’ and multiplication ‘·’ by elements of E(X )[D] from the left.
More precisely, we interpret the elements of E(X )[D]` as ` -rows with entries in
E(X )[D] and set

a · (a1, . . . , a`) := (a ◦ a1, . . . , a ◦ a`)

for all a ∈ E(X )[D]. It is easy to see that

(b · a) · e = (b ◦ a) ◦ e

= b ◦ (a ◦ e)
= b · (a · e)
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for all e ∈ E(X )[D]` and a, b ∈ E(X )[D], and the distributivity axioms are obviously
satisfied.

To construct a global compatibility operator for A it suffices to paste together
local compatibility operators by using a partition of unity on X . Hence, there is no
loss of generality in assuming that both E ∼= X × Ck and F ∼= X × C` are trivial.
Then A ∈ Diffa(X ;E,F ) is given by an (`×k) -matrix of scalar differential operators
on X . Thus, A induces a map of free finitely generated left E(X )[D] -modules

E(X )[D]k
h1← E(X )[D]`,

where we define h1(e) = e ◦A for e ∈ E(X )[D]`.
Obviously, M = E(X )[D]k/ im h1 bears the structure of a left E(X )[D] -module.

Indeed, given an equivalence class [m] ∈ M , we define a · [m] = [a · m] for all
a ∈ E(X )[D]. Since

a ◦ (m + e ◦A) = a ·m + (a · e) ◦A

for all e ∈ E(X )[D]`, it follows that the definition is correct, i.e., it does not depend
on the particular choice of representative m ∈ [m]..

It is well known that each module admits a free resolution, i.e., there exists a
(possibly infinite) exact sequence

0←M ← F0 ← F1 ← . . . ,

where F0, F1, . . . are free right E(X )[D] -modules. More precisely, M is the quotient
F0/H0 of a free E(X )[D] -module F0 over a submodule H0, H0 is the quotient F1/H1

of a free E(X )[D] -module F1 over a submodule H1, and so on, see for instance
[ML63].

Of course, such a sequence is not unique. However, it is unique modulo homotopy
equivalence. We note that im h1

∼= E(X )[D]`/ ker h1. Since H1 = ker h1 is a left
E(X )[D] -module, it is the quotient F2/H2 of a free E(X )[D] -module F2 over a
submodule H2, and so on. Denote by h0 the canonical projection E(X )[D]k →M .
Then we arrive at a free resolution

0← M
h0← E(X )[D]k

h1← E(X )[D]`
h2← F2 ← . . . (2.2)

of M = E(X )[D]k/E(X )[D]` ◦A.
If F2 is finitely generated, i.e., F2 = E(X )[D]m, then we easily see that h2

is induced by some differential operator B ∈ Diffb(X ;F,G) via h2(e) = e ◦ B for
e ∈ E(X )[D]m. This readily gives a compatibility operator B for A, for the sequence
(2.2) is exact. However, the ring E(X )[D] is not Noetherian and hence we can not
guarantee in general that the module F2 is finitely generated. If {ei}i∈I is a basis
for F2, with some index set I, then we consider h

(i)
2 = h2(ei) ∈ E(X )[D]`, thus

obtaining

B = {h(i)
2 }i∈I .

Quillen proved that if the operator A is ‘sufficiently regular’ then all the modules
F2, F3, . . . can be chosen to be finitely generated and, moreover, the resolution (2.2)
is of finite length, see [Qui64].

Let us clarify this. For each operator A ∈ Diffa(X ;E,F ) there is a bundle
homomorphism h(A) : Ja(E)→ F , such that

A = h(A) ◦ ja.
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In fact, in a coordinate neighbourhood U in X where A has representation (2.1)
and u ∈ Ja(E) has representation (1.2) we may set

h(A)u (x) =
∑
|α|≤a

Aα(x) α!uα(x)

for x ∈ U . It follows from the bundle structure of Ja(E) that this actually defines
a global bundle homomorphism h(A) with the desired property.

For s ≥ a, we consider a family of vector spaces

Rs(p) = ker
(
h(js−aA) : Js

p(E)→ Js−a
p (F )

)
parametrised by the points p ∈ X . It is easy to see that the restriction of πr,s to
Rs(p) takes its values in Rr(p).

Definition 2.2. A differential operator A ∈ Diffa(X ;E,F ) is said to be sufficiently
regular if:

1) The dimensions of vector spaces Rs(p) with s ≥ a do not depend on p ∈ X .
2) For all a ≤ r ≤ s the rank of the map πr,s : Rs(p) → Rr(p) does not

depend on p ∈ X .

The condition 1) means that, for all s ≥ a, the family

Rs =
⋃

p∈X
Rs(p)

is a vector bundle over X (regularity).
The condition 2) is more subtle and says that πr,s (Rs) is a vector subbundle of

Jr(E) for all a ≤ r ≤ s.
The concept of sufficient regularity plays a crucial role in Spencer’s theory, cf.

[Spe69]. Although being within linear algebra, the conditions 1) and 2) are too
awkward to be efficiently verified in the general case. Nevertheless the regularity
is very important for a compatibility operator to exist in the class of differential
operators.

Example 2.3. Let X = R and a ∈ E(R) satisfy a(x) > 0 for x > 0 and a(x) = 0
for x ≤ 0. Define Au (x) = a(x)u(x) for u ∈ E(R). The operator A is differential
of zero order and A is well known to be not sufficiently regular, see for instance
Example 1.3.5 in [Tar95]. Moreover, A has no compatibility operator in the class
of usual differential operators, i.e., the module F2 in (2.2) can not be chosen to be
finitely generated. Indeed, kerh1 consists of all differential operators with smooth
coefficients vanishing for x ≥ 0. Each compatibility operator for A in the class of
differential operators has the form

Bf (x) =
b∑

j=0

Bj(x)f (j)(x),

where Bj is an m -column of smooth functions on R satisfying Bj(x) = 0 for all
x ≥ 0. Obviously, we may restrict our attention to those B which have order zero,
i.e.,

B =

 b1(x)
...

bm(x)


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where bi ∈ E(R) vanish for x ≥ 0. When specified in the ring E(R)[D], the family
{bi} should be linearly independent over E(R)[D]. We now observe that the zero
order differential operator Cf (x) = (b1(x)/x) f(x) has smooth coefficients and
satisfies CA ≡ 0. If there is a row Q = (Q1, . . . , Qm) of scalar differential operators
with smooth coefficients satisfying C = QB, then b1(x) = xQB on R. Since
b1 = (1, 0, . . . , 0)B and the family {bi} is linearly independent over E(R)[D], it
follows xQ1 = 1 and Qj = 0 for j > 1. This is impossible if the coefficients of Q are
smooth. Hence, A does not possess any compatibility differential operator. Take
now a Hamel basis {ei}i∈I for the vector space consisting of all functions e ∈ E(R)
vanishing for x ≥ 0. By the above, the E(R)[D] -module F2 just amounts to the
free submodule of E(R)[D] generated by the system {ei}i∈I , and all the modules
F3, F4, . . . are zero. We thus arrive at the free resolution of the E(R)[D] -module
M := E(R)[D]/E(R)[D] ◦A

0← M
h0← E(R)[D] h1← E(R)[D] h2← F2 ← 0

where h1(e) = e ◦ A and h2(e) = e, the element e being thought of as that of
E(R)[D].

It is worth pointing out that the compatibility operator B = {ei}i∈I obtained
in the framework of E(R)[D] -modules does not give “proper” solvability conditions
for the equation Au = f in smooth functions. Indeed, the condition Bf = 0 yields
only that f(x) = 0 for x ≤ 0. However, for the existence of a smooth solution to
the equation Au = f it is necessary and sufficient that f(x) = 0 for x ≤ 0 and the
limit

lim
x→0+

( d

dx

)j f(x)
a(x)

exist for each j = 0, 1, . . ..
With any short complex of differential operators

E(X , E) A→ E(X , F ) B→ E(X , G) (2.3)

we associate the family of complexes of linear maps of finite dimensional vector
spaces

Js+b+a
p (E)

h(js+bA)→ Js+b
p (F )

h(jsB)→ Js
p(G) (2.4)

parametrised by points p ∈ X of the underlying manifold and s = 0, 1, . . .. The
complex (2.3) is said to be formally exact if the complex (2.4) is exact for all p ∈ X
and s ∈ N0. For a long complex on X , the formal exactness means formal exactness
of any short subcomplex.

Lemma 2.4. Each formally exact complex of differential operators is a compati-
bility complex for the initial operator A.

Proof. See for instance Proposition 1.3.11 in [Tar95]. �

It is worth pointing out that not any compatibility complex for a differential
operator is formally exact.

If A ∈ Diffa(X ;E,F ) is a sufficiently regular differential operator, then the
families of vector spaces Rs(p) parametrised by p ∈ X behave properly to be
filtered as Rs(p) ↪→ Rr(p) for all a ≤ r ≤ s, the embeddings being of constant
ranks. Under this condition a compatibility complex for A can be constructed
purely within linear algebra.
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Theorem 2.5. For each sufficiently regular operator A on X one can construct in
finitely many steps a formally exact complex {Ai}i=0,1,...,N of differential operators
on X , such that A0 = A.

Proof. See [Qui64], [Gol67] or Theorem 3.3.9 in [Tar95]. �

3. Formal solutions to Hans Lewy’s equation

Suppose that the system Au = f has a sufficiently smooth solution u in a neigh-
bourhood of a point p ∈ U . Write

u(x) =
∑
|α|≤s

∂αu(p)
α!

(x− p)α + o(|x− p|s),

f(x) =
∑

|α|≤s−a

∂αf(p)
α!

(x− p)α + o(|x− p|s−a)

and

A =
∑
|β|≤a

( ∑
|α|≤s−a

∂αAβ(p)
α!

(x− p)α + o(|x− p|s−a)
)
∂β

near p. On substituting these expansions into the equality Au = f and equating
the coefficients of the same powers (x − p)α with |α| ≤ s − a on both sides of the
equality we get ∑

|α|≤s−a

∂α(Au)(p)
α!

(x− p)α =
∑

|α|≤s−a

∂αf(p)
α!

(x− p)α,

i.e., js−a
p (Au) = js−a

p f for all s ≥ a.
Since js−aA = h(js−aA) ◦ js, where h(js−aA) is the bundle homomorphism

Js(E)→ Js−a(F ) defined above, we deduce that for the local solvability of Au = f
about a point p it is necessary that the system would possess a formal solution at
p in the sense h(js−aA) js

pu = js−a
p f .

The extreme case s = ∞ corresponds to formal power series solutions at the
point p. Homological algebra gives an efficient tool to examine this, for the ring
of scalar differential operators whose coefficients are formal power series at p is
Noetherian. Write F(p)[D] for this ring. As the coefficients of A are smooth, we
may expand them as formal power series at p, thus specifying A as (`× k) -matrix
with entries in F(p)[D]. This gives rise to a mapping of free finitely generated
F(p)[D] -modules

F(p)[D]k
A← F(p)[D]`.

As the ring F(p)[D] is Noetherian, we get a finite free resolution

0← M
h0← F(p)[D]k

h1← F(p)[D]`
h2← F(p)[D]m ← . . . (3.1)

of M = F(p)[D]k/F(p)[D]` ◦A.
In this way we get an (` × m) -matrix h2 of scalar differential operators with

coefficients being formal power series at p. It provides us with a compatibility
operator B in the class of formal power series at p. It is clear that the coefficients
of the operator B need not depend continuously on the point p ∈ X . However, this
can be the case even in very involved situations.
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Example 3.1. Consider the operator A of Example 2.3. Obviously, for x ≤ 0 each
formal power series u at p = x satisfies the equation Au = f , if f vanishes for
x ≤ 0. Since there are no divisors of zero in the ring of formal power series, we
deduce that the solution to Au = f is unique for x > 0. More precisely, given a
formal power series

f(x, z) =
∞∑

j=0

fj(x)zj

at x > 0, choose a smooth function g in a neighbourhood of x with the property
that

1
j!

g(j)(x) = fj(x)

for all j = 0, 1, . . .. Then the formal power series

u(x, z) =
∞∑

j=0

1
j!

(g

a

)(j)

(x) zj

satisfies Au = f at x. It is clear that the coefficients of u are independent of the
particular choice of g. Hence, we can take as B the formal power series of any
function b ∈ E(R) satisfying b(x) > 0 for x < 0 and b(x) = 0 for x ≥ 0. Note
that the coefficients of u(x, z) need not depend smoothly on x, even if fj(x) do so.
In order that there be a formal power series u with smooth coefficients satisfying
Au = f for x in a neighbourhood of 0, it is necessary and sufficient that each
derivative (g

a

)(j)

(x)

would have finite limit when x→ 0+.

We now turn to the equation of Hans Lewy, see [Lew57]. Let X = R3 = Cz×Rt,
where z = x1 + ıx2 and t = x3. The operator of Hans Lewy is A = ∂̄z + ız∂t.
This operator is known to be sufficiently regular, and its compatibility operator
is B = 0. The inhomogeneous equation Au = f is locally solvable for any real
analytic function f . However, it fails in general to have any local solution if f is
merely C∞.

This shows that the ring E(X )[D] of scalar differential operators with smooth
coefficients is not a good choice for constructing a compatibility operator in the
category of smooth functions. It is conceivable that D -modules may not be the
right tool here.

Fix any x0 = (z0, t0) in X . When using the ring F(x0)[D] we get jx0(B) = 0,
for there are no divisors of zero in this ring.

Write
A = ∂̄z + ı(z − z0)∂t + ız0∂t,

then for any monomial (z − z0)α1(z̄ − z̄0)α2(t− t0)α3 we obtain

A (z − z0)α1(z̄ − z̄0)α2+1(t− t0)α3 = (α2 + 1) (z − z0)α1(z̄ − z̄0)α2(t− t0)α3

+ ıα3 (z − z0)α1+1(z̄ − z̄0)α2+1(t− t0)α3−1

+ ıα3z0 (z − z0)α1(z̄ − z̄0)α2+1(t− t0)α3−1.

(3.2)
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If α3 = 0 then the last two terms on the right-hand side of (3.2) vanish, i.e., we
have

A (z − z0)α1(z̄ − z̄0)α2+1 = (α2 + 1) (z − z0)α1(z̄ − z̄0)α2 .

Using (3.2) and induction in α3 we immediately conclude that for every monomial
(z − z0)α1(z̄ − z̄0)α2(t− t0)α3 there exists a polynomial ℘α(z − z0, z̄ − z̄0, t− t0) of
degree α1 +α2 +2α3 +1, whose coefficients are polynomials with respect to z0 and
rational functions with respect to α, such that

A ℘α(z − z0, z̄ − z̄0, t− t0) = (z − z0)α1(z̄ − z̄0)α2(t− t0)α3 .

On writing this in coordinates x = (x1, x2, x3) we see that for any formal power
series

f(x, z) =
∑

α∈Z3
0

fα(x)zα

at x ∈ R3 there exists a formal power series

u(x, z) =
∑

α∈Z3
0

uα(x)zα

satisfying Au = f . Moreover, the coefficients uα(x) can be chosen to smoothly
depend on x, if the coefficients fα(x) do so. The solution u(x, z) is certainly not
unique, because the jet of any holomorphic function of z independent of t satisfies
Au = 0.

4. Connection on the bundle of formal power series

Let U be a coordinate neighbourhood in X over which the bundles E and F are
trivial, and let x = (x1, . . . , xn) be coordinates in U .

Throughout the section we assume s ∈ N0 ∪ {∞}. In the case s = ∞ we set
s− a =∞ for any finite a.

Any section u of the bundle Js(E) has local representation

u(x, z) =
∑
|α|≤s

uα(x)zα

over U , where (x, z) ∈ U × Cn. By definition, u is smooth if all the coefficients uα

are smooth functions U → Ck for some family {U} covering X (then it is true for
all families {U}).

Our next objective is to introduce first order differential operators ds on X , which
map sections of Js(E) to sections of Js−1(E)⊗Λ1, where Λq := ΛqT ∗X stands for
the bundle of exterior forms of degree 0 ≤ q ≤ n over X . These operators play a
key role in Spencer’s theory and are actually induced by a connection d := d∞ on
the bundle of formal power series with coefficients in E over X . It will cause no
confusion if we suppress in notation the dependence of ds on E, for the genuine
bundle is always clear from context. On the other hand, ds are of universal character
and hardly depend on E.

More precisely, we set

(dsu) (x, z) =
∑

|α|≤s−1

(
duα(x)−

n∑
j=1

(αj + 1)uα+ej (x)dxj
)
zα (4.1)

in local coordinates, where ej is the multi-index of length 1 in Nn
0 whose k th

component is 1, if k = j, and 0 otherwise. If s is finite, then (4.1) actually defines
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a global differential operator ds ∈ Diff1(X ; Js(E), Js−1(E) ⊗ Λ1), see [Spe69]. If
s =∞, this is no longer the case, for the bundle J∞(E) is of infinite rank.

Lemma 4.1. As defined above, d is a connection on the bundle of formal power
series with coefficients in E over X .

Proof. It suffices to show that d fulfills the Leibniz formula d(fu) = df u + fdu for
all u ∈ E(X , J(E)) and f ∈ E(X ). Since this formula is of local character, it suffices
to verify it in each coordinate neighbourhood U in X . This easily follows by using
the explicit formula (4.1). �

A section u ∈ E(U, Js(E)) is said to be flat in U if dsu = 0 in U . It is easily seen
that dsu = 0 in U if and only if

uα(x) =
1
α!

∂αu0(x)

for all x ∈ U and all |α| ≤ s. In other words, each flat section u ∈ E(U, Js(E))
stems from a smooth section u0 ∈ E(U,E) by

u(x, z) = jsu0 (x, z)

=
∑
|α|≤s

∂αu0(x)
α!

zα

for (x, z) ∈ U × Cn.
As usual, for each 0 ≤ q ≤ n, the operator d raises a sequence of first order differ-

ential operators dq on X mapping sections of J(E)⊗Λq to sections of J(E)⊗Λq+1.
The operators dq are uniquely determined by requiring the generalised Leibniz for-
mula

dq(fu) = df u + (−1)qfdu (4.2)

for all u ∈ E(X , J(E)) and f ∈ Ωq(X ).
Actually, for each pair 0 ≤ q ≤ n and s, there exists a first order differential

operator ds,q on X which maps sections of Js(E)⊗Λq to sections of Js−1(E)⊗Λq+1

and satisfies a suitably modified equation (4.2). The operator ds,q is defined locally
in the following way. Each section u ∈ E(X , Js(E) ⊗ Λq) has in U local represen-
tation

u(x, z) =
∑

#I=q

′( ∑
|α|≤s

uI,α(x)zα
)
dxI

for (x, z) ∈ U ×Cn, where uI,α are smooth functions on U with values in Ck. The
prime on the summation symbol means that the sum is over all increasing multi-
indices I = (i1, . . . , iq) of integers 1 ≤ i1 < . . . < iq ≤ n, and dxI = dxi1 ∧ . . .∧dxiq .
Then we set

(ds,qu) (x, z) =
∑

#I=q

′( ∑
|α|≤s−1

(
duI,α(x)−

n∑
j=1

(αj + 1)uI,α+ej
(x)dxj

)
zα

)
∧ dxI ,

(4.3)
cf. (4.1).

Obviously, ds,0 = ds. Similarly to the exterior derivative we will write ds,q simply
ds also for q > 0, when no confusion can arise.

The elements of
Ωq(X , Js(E)) := E(X , Js(E)⊗ Λq),
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will be referred to as differential forms of degree q with coefficients in the bundle
Js(E) on X .

It is easy to check that

(dsu)(x, z) = πs−1,s d u(x, z − x), if s <∞,
(dsu)(x, z) = d u(x, z − x), if s =∞,

for all u ∈ Ωq(X , Js(E)), the exterior derivative d acting in the variable x. Hence
it follows that ds−1ds = 0 for finite s. For s =∞ we get

dq+1dq = lim
s→∞

ds−1,q+1ds,q

= 0,

meaning that the resulting infinite sum is formal. Assuming s ≥ n we thus arrive
at the complex

0→ E(X , E)
js

→ E(X , Js(E)) ds

→ Ω1(X , Js−1(E)) ds−1

→ . . .
ds−n+1

→ Ωn(X , Js−n(E))→ 0.
(4.4)

Lemma 4.2. Suppose that s ≥ n. As defined above, complex (4.4) is exact at each
step.

Proof. The exactness at step 0 is obvious. Since flat jets stem from smooth sections
of E, the exactness of (4.4) at step 1 is also clear. It remains to prove the exactness
at steps ≥ 2.

Let U be a coordinate neighbourhood in X over which the bundle E is trivial.
We next prove that the complex

E(U, Js(E)) ds

→ Ω1(U, Js−1(E)) ds−1

→ . . .
ds−n+1

→ Ωn(U, Js−n(E))→ 0

is exact at each term Ωq(U, Js−q(E)) for q = 1, . . . , n.
For r = 0, 1, . . ., we denote by Σ r := Σ rT ∗X the r -fold symmetric product

of the cotangent bundle of X . Any section u ∈ Ωq(X , E ⊗ Σ r−q) has in U local
representation

u(x, z) =
∑

#I=q

′( ∑
|α|=r−q

uI,α(x)zα
)
dxI ,

uI,α being smooth functions on U with values in Ck. These bundles naturally occur
in the complex

0→ E(U,E ⊗ Σ r) δ→ Ω1(U,E ⊗ Σ r−1) δ→ . . .
δ→ Ωn(U,E ⊗ Σ r−n)→ 0, (4.5)

where

δu (x, z) =
∑

#I=q

′( ∑
|α|=r−q−1

( n∑
j=1

(αj + 1)uI,α+ej (x)dxj
)
zα

)
∧ dxI

for u ∈ Ωq(U,E ⊗ Σ r−q).
As is noted in [Spe69], δ actually acts as exterior derivative applied in z ∈ Rn

to the form ∑
#I=q

′( ∑
|α|=r−q

uI,α(x)zα
)
dzI ,

hence the complex (4.5) is exact.
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We proceed to show that (4.4) is exact over U . Suppose f ∈ Ωq(U, Js−q(E)) is
of the form

f(x, z) =
∑

#I=q

′( ∑
|α|≤s−q

fI,α(x)zα
)
dxI ,

where 1 ≤ q ≤ n and fI,α are smooth functions on U with values in Ck. For
0 ≤ p ≤ s− q, we introduce

fp(x, z) =
∑

#I=q

′( ∑
|α|=p

fI,α(x)zα
)
dxI .

From the construction (4.3) of ds it follows immediately that dsf = 0 if and only
if dfp − δfp+1 = 0 in U for all p = 0, 1, . . . , s− q − 1. We are looking for a section
u ∈ Ωq−1(U, Js−q+1(E)) satisfying dsu = f in U . Obviously, this is equivalent to
the system

dup − δup+1 = fp,

for 0 ≤ p ≤ s− q, in U , where

up(x, z) =
∑

#I=q−1

′( ∑
|α|=p

uI,α(x)zα
)
dxI .

We may choose {uI,0}#I=q−1 arbitrarily in E(U,E), for instance, uI,0 ≡ 0 in U .
This determines u0.

The above system is thus reduced to the system

δup+1 = dup − fp (4.6)

in U , for p = 0, 1, . . . , s− q. As the complex (4.5) is exact, all we have to check is
that δ applied to the right-hand side of (4.6) is equal to zero, i.e., δ (dup − fp) = 0
in U , whenever p = 0, 1, . . . , s− q.

Now we argue by induction. For p = 0 the equality holds automatically. Assume
that δ (dup − fp) = 0 is fulfilled for some 1 ≤ p < s − q. Then there is a form
up+1 ∈ Ωq−1(U,E ⊗ Σp+1) satisfying δup+1 = dup − fp in U . Using the equality
δd + dδ = 0, we get

δ (dup+1 − fp+1) = −dδup+1 − δfp+1

= −d (dup − fp)− δfp+1

= dfp − δfp+1

= 0,

which completes the induction. We have thus established that the cohomology of
(4.4) over U is zero.

It follows that the complex of sheaves associated to (4.4) is exact at each step.
Hence, it gives a fine resolution of the sheaf E(·, E) over X defined by U 7→ E(U,E)
for open sets U in X . By the abstract de Rham theorem, the cohomology of (4.4) at
Ωq(X , Js−q(E)) is isomorphic to Hq(X , E(·, E)) for all q = 1, . . . , n, see for instance
Theorem 5.2.13 in [Tar95]. Since the sheaf E(·, E) is fine, its global cohomology is
zero at positive steps, see Corollary 5.2.3 ibid. This shows that the cohomology of
(4.4) at steps ≥ 2 is zero, as desired. �

For s ≥ a, the differential operator js−a ◦ A ∈ Diffs(X ;E, Js−a(F )) is called
the (s − a) th prolongation of A. Prolongations of a differential operator A bring
information on all possible differential consequences of the inhomogeneous system
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Au = f . We have js−aA = h(js−aA) ◦ js, where h(js−aA) is a bundle homo-
morphism Js(E)→ Js−a(F ) uniquely determined by js−aA. Of course, h(js−aA)
acts on the sections of Js(E) by linear transformations in fibres Js

p(E) smoothly
depending on p ∈ X . In particular, it induces a homomorphism of E(X ) -modules
E(X , Js(E)) → E(X , Js−a(E)), for which we use the same notation. For s = ∞,
the bundle J∞(E) coincides with the bundle of formal power series with coeffi-
cients in E over X . Thus, h(j∞A) is a homomorphism of infinite rank vector
bundles J(E)→ J(F ) over X .

If u ∈ E(X , Js(E)) has local representation u(x, z) =
∑
|α|≤s

uα(x)zα over U , then

we get

h(js−aA)u (x, z) =
∑

|α|≤s−a

( ∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x)
)
zα (4.7)

for (x, z) ∈ U × Cn. This shows that the bundle homomorphism h(j∞A) is given
by an infinite matrix whose entries are supported below a secondary diagonal de-
termined by the order of A.

Lemma 4.3. For any A ∈ Diffa(X ;E,F ), B ∈ Diffb(X ;F,G) and s ≥ a + b, we
have

h(js−a−b ◦BA) = h(js−a−b ◦B) h(js−a ◦A).

Proof. For finite s the equality is well known, cf. Corollary 1.3.2 in [Tar95]. We
restrict ourselves to s =∞.

Let s ∈ Jp(E), where p ∈ X . Choose a section u ∈ E(X , E), such that j∞p u = s.
By definition,

h(j∞ ◦BA)s = h(j∞ ◦BA)j∞p u

= j∞p (B(Au)).

On the other hand,

j∞p (B(Au)) = h(j∞ ◦B) j∞p (Au)

= h(j∞ ◦B)h(j∞ ◦A) j∞p u

= h(j∞ ◦B)h(j∞ ◦A)s,

as desired. �

In particular, we have du = du− h(j∞d)u for all u ∈ Ωq(X , J(E)), the exterior
derivative acting in x.

Lemma 4.4. For any integers s and q with s− (q + 1) ≥ a, the following diagram
is commutative:

Ωq(X , Js−q(E)) ds−q

→ Ωq+1(X , Js−q−1(E))
| |

h(js−q−aA)⊗I h(js−q−1−aA)⊗I

↓ ↓
Ωq(X , Js−q−a(F )) ds−q−a

→ Ωq+1(X , Js−q−1−a(F ))
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Proof. Since the mappings entering into the diagram are local, it suffices to prove
the commutativity of the diagram in any coordinate neighbourhood U in X over
which both E and F are trivial. Then we can use local representations of ds and
h(js−aA).

Let u ∈ Ωq(X , Js−q(E)). Then(
h(js−q−1−aA)⊗ I

)
ds−qu (x, z) =

∑
#I=q

′ ∑
|α|≤s−q−1−a

zα

×
∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

(
duI,γ(x)−

n∑
j=1

(γj + 1)uI,γ+ej
(x)dxj

)
∧ dxI

(4.8)

for all (x, z) ∈ U × Cn. Similarly,

ds−q−a
(
h(js−q−aA)⊗ I

)
u (x, z) =

∑
#I=q

′ ∑
|α|≤s−q−1−a

zα

×
(
d(h(js−q−aA)uI)α(x)−

n∑
j=1

(αj + 1)(h(js−q−aA)uI)α+ej
(x)dxj

)
∧ dxI ,

(4.9)

where uI(x, z) =
∑

|α|≤s−q

uI,α(x)zα.

An easy computation shows that

(h(js−q−aA)uI)α+ej
(x) =

∑
|β|≤a

β−ej≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

(γ + ej)!
(γ + ej − β)!

uI,γ+ej
(x)

and

d(h(js−q−aA)uI)α(x)

=
n∑

j=1

∑
|β|≤a

β−ej≤γ≤α+β−ej

∂α+β−γAβ(x)
(α + β − γ − ej)!

(γ + ej)!
(γ + ej − β)!

uI,γ+ej (x)dxj

+
∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

duI,γ(x).

Using the fact that αj + βj = γj + 1, provided γ = α + β − ej , we immediately
obtain

d(h(js−q−aA)uI)α(x)−
n∑

j=1

(αj + 1)(h(js−q−aA)uI)α+ej (x)dxj

=
∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

(
duI,γ(x)−

n∑
j=1

(γj + 1)uI,γ+ej (x)dxj
)

for x ∈ U .
Hence it follows that the right-hand sides of (4.8) and (4.9) coincide, which

establishes the lemma. �



16 A. SHLAPUNOV AND N. TARKHANOV

5. Spencer’s complex

Definition 5.1. A differential operator A ∈ Diffa(X ;E,F ) is said to be formally
integrable if:

1) The operator A is sufficiently regular.
2) For each p ∈ X , the map πs−1,s : Rs(p) → Rs−1(p) is surjective whenever

s > a.

Formal integrability of a differential operator A of order a means that, for ev-
ery s > a, all differential consequences of order s of the system Au = 0 (i.e.,
consequences extracted by means of differentiations of any orders, equating mixed
derivatives, and application of linear algebra for each x ∈ X ) may be actually ob-
tained by way of differentiation of order no more than s − a, and application of
linear algebra.

A sufficiently regular differential operator need not be formally integrable, see for
instance Example 1.3.17 in [Tar95]. However, each sufficiently regular differential
operator can be transformed to a formally integrable operator by using homotopy
equivalence.

Two differential operators AE of type E0 → E1 and AF of type F 0 → F 1 on
X are called equivalent if there exist differential operators Mi of type F i → Ei

and M−1
i of type Ei → F i, for i = 0, 1, and differential operators hE

1 of type
E1 → E0 and hF

1 of type F 1 → F 0, with the property that the following conditions
are fulfilled:

1) M1AF −AEM0 = 0, 2) M−1
0 M0 = I − hF

1 AF ,
M−1

1 AE −AF M−1
0 = 0; M0M

−1
0 = I − hE

1 AE ,

cf. the diagram

E(X , F 0)
AF

�
hF

1

E(X , F 1)yM0

xM−1
0

yM1

xM1
−1

E(X , E0)
AE

�
hE

1

E(X , E1).

(5.1)

The following lemma clarifies the role of the concept of homotopy equivalence in
constructing a compatibility operator.

Lemma 5.2. Let AE and AF be equivalent differential operators on X . If for AF

there exists a compatibility complex then there exists a compatibility complex for
AE, too.

Proof. See for instance Proposition 1.2.7 in [Tar95]. �

Our next objective is to explain how to transform any sufficiently regular differ-
ential operator to a formally integrable operator.

Lemma 5.3. Let A ∈ Diffa(X ;E,F ) be a sufficiently regular operator. Then there
is a differential operator D, which can be constructed in finitely many steps, such
that:

1) The operator DA is formally integrable.
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2) A section u ∈ E(U,E) satisfies DAu = 0 in U if and only if Au = 0 in U .
3) The operators A and DA are equivalent.

Proof. A formally integrable differential operator Ã equivalent to A can be con-
structed from A by completely writing differential consequences of the equation
Au = 0. The sufficient regularity of A guarantees that this procedure terminates in
finitely many steps. The operator Ã obtained this way has the form Ã = (I⊕D)◦A
for some differential operator D. Obviously, local solutions to the homogeneous
equations Ãu = 0 and Au = 0 are the same. Moreover, a trivial verification
shows that the operators Ã and A are equivalent, see for instance Example 1.2.6 in
[Tar95]. �

For s ≥ a and p ∈ X , we denote by σs(p) the kernel of the bundle homomorphism
πs−1,s : Rs(p)→ Rs−1(p). If the operator A is sufficiently regular and s > a, then
σs is a vector bundle over X .

Often σs is called the symbolic bundle of the (s − a) th prolongation js−a ◦ A
of A because it may be identified with the kernel of the bundle homomorphism
E⊗Σ s → F⊗Σ s−a induced by h(js−aA). One can easily verify that the restriction
of the formal exterior derivative operator δ to σs−q ⊗ Λq maps to σs−q−1 ⊗ Λq+1

for any s and q with s − q − 1 ≥ a. This gives rise to the complex of bundle
homomorphisms

0→ σs δ→ σs−1 ⊗ Λ1 δ→ σs−2 ⊗ Λ2 δ→ . . .
δ→ σs−n ⊗ Λn → 0 (5.2)

that is known as δ -complex of Spencer. It is not necessarily exact at all steps but
is so at the steps 0 and 1.

One of possible definitions of involutive differential operators actually reads that
a differential operator A is called involutive if the complex (5.2) is exact for all
s ≥ a.

Theorem 5.4. For each sufficiently regular differential operator A on X there
exists an integer s0 ≥ a, such that the complex (5.2) is exact for all s ≥ s0.

Proof. See for instance 4.1 of [Pom78, Ch. 3]. �

For a vector bundle E over X it will be convenient to denote by SE the sheaf
of germs of differentiable sections of E. Thus, SE(U) = E(U,E) for each open set
U ⊂ X .

If A ∈ Diffa(X ;E,F ) is sufficiently regular then we have a suitable compatibility
complex of sheaves

SE
A→ SF

B→ SG, (5.3)

the pair {A,B} being sometimes referred to as an overdetermined operator. The
basic question of the existence theory of overdetermined systems consists of finding
reasonable conditions on A which guarantee the exactness of (5.3). This means, for
any point p ∈ X and any f ∈ E(U,F ) satisfying Bf = 0 in a neighbourhood U of
p, there should exist a possibly smaller neighbourhood V ⊂ U of p and a section
u ∈ E(V,E), such that Au = f in V . The well-known examples of Lewy [Lew57]
and Mizohata [Miz61] show that the sufficient regularity of A is not sufficient for
the exactness of (5.3).

To study the cohomology of (5.3), Spencer introduced the following complex,
see his survey [Spe69]. By Lemma 4.4, the operator ds−q maps Ωq(U,Rs−q) to
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Ωq+1(U,Rs−q−1) for any open set U ⊂ X , provided that s − (q + 1) ≥ a. Since
ds−q has zero curvature, we arrive at the complex of sheaves

0→ Sker A
js

→ SRs
ds

→ SRs−1⊗Λ1
ds−1

→ . . .
ds−n+1

→ SRs−n⊗Λn → 0 (5.4)

over X , Sker A being the sheaf of germs of smooth solutions to Au = 0 over X ,
cf. (4.4). This differential complex is called the first sequence of Spencer for the
operator A.

Lemma 5.5. The cohomology of (5.4) is independent of s, provided s ≥ s0 +n−1,
where s0 is the number from Theorem 5.4.

Proof. See [Spe69, p. 196]. �

We say that s ∈ N0 is in the stable range if it is large enough for the cohomology
of (5.4) to be stable.

Theorem 5.6. Let A ∈ Diffa(X ;E,F ) be sufficiently regular and {Ai}i=0,1,... be
a formally exact complex of differential operators on X with A0 = A. Then the
cohomologies of the complexes

0 → Sker A(X )
js

→ E(X ,Rs) ds

→ Ω1(X ,Rs−1) ds−1

→ . . .
ds−n+1

→ Ωn(X ,Rs−n) → 0,

0 → Sker A(X ) ↪→→ E(X , E0) A0

→ E(X , E1) A1

→ . . .
An−1

→ E(X , En) → . . .

are the same, if s ∈ N0 is in the stable range.

This result is due to Quillen and it is contained in his unpublished thesis [Qui64],
cf. Theorem 10.1.

Proof. The relationship between the complexes in question is expressed by the
commutative diagram

0 0 0
↓ ↓ ↓

0 → Sker A(X)
js

→ E(X ,Rs) ds

→ Ω1(X ,Rs−1) ds−1

→ . . .
| | |

↪→ ↪→ ↪→

↓ ↓ ↓
0 → E(X , E0)

js

→ E(X , Js(E0)) ds

→ Ω1(X , Js−1(E0)) ds−1

→ . . .
| | |

A0 h(js−a0A0) h(js−1−a0A0)⊗I

↓ ↓ ↓

0 → E(X , E1)
js−a0

→ E(X , Js−a0(E1)) ds−a0
→ Ω1(X , Js−1−a0(E1)) ds−1−a0

→ . . .
| | |

A1 h(js−a0−a1A1) h(js−1−a0−a1A1)⊗I

↓ ↓ ↓
. . . . . . . . .

(5.5)
where s is large. Since the complex {Ai}i=0,1,... is formally exact and the first
Spencer sequence for the trivial operator is exact, the diagram is exact except
possibly for the first row and first column. Thus by diagram chasing the cohomol-
ogy of the first column is the same as the stable cohomology of the first Spencer
sequence. �
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The difficulty with the first Spencer sequence is that although the original equa-
tion can be elliptic, this sequence is almost never elliptic in the sense that its sym-
bol sequence at every non-zero cotangent vector is exact. To remedy this difficulty,
Spencer developed at the beginning of the 1960s a different method for constructing
a resolution of the sheaf of solutions of an equations. We will not discuss here the
so-called second sequence of Spencer which has better formal properties than the
first one, see [Spe69].

6. Normalised operators

In this section we describe an explicit local construction of a compatibility oper-
ator for A. In this way we also obtain additional information on the local structure
of sufficiently regular operators.

Definition 6.1. A differential operator A ∈ Diffa(X ;E,F ) is said to be normalised
if:

1) The order of A is equal to 1, i.e., a = 1.
2) The operator A is formally integrable.
3) The operator A is involutive.
4) The principal symbol map σ(A) : E ⊗ T ∗X → F is surjective.

The principal symbol map is defined by σ(A)u = h(A)u for u ∈ E⊗T ∗X , where
E ⊗ T ∗X is identified within J1(E).

The first three conditions have already been discussed. The last condition 4)
actually means that among the equations Au = 0 there are no purely algebraic
equations for components u1, . . . , uk of u. If such equations occur, one can exclude
them by canceling a number of the functions u1, . . . , uk. Obviously, the transformed
operator is equivalent to the initial one.

Theorem 6.2. Each sufficiently regular operator A ∈ Diffa(X ;E,F ) on X can
be transformed in finitely many steps within the framework of differentiations and
linear algebra in fibers of the bundles into an equivalent normalised differential
operator.

Proof. See Theorem 1.3.24 of [Tar95]. �

Two complexes of differential operators Ai
E of type Ei → Ei+1 and Ai

F of type
F i → F i+1 on X are called homotopy equivalent if there exist differential operators
Mi of type F i → Ei and M−1

i of type Ei → F i, for i = 0, 1, . . ., and differential
operators hE

i of type Ei → Ei−1 and hF
i of type F i → F i−1, for i = 1, 2, . . ., such

that:

1) Mi+1A
i
F −Ai

EMi = 0, 2) M−1
i Mi = I − hF

i+1A
i
F −Ai−1

F hF
i ,

M−1
i+1A

i
E −Ai

F M−1
i = 0; MiM

−1
i = I − hE

i+1A
i
E −Ai−1

E hE
i
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for i = 0, 1, . . ., cf. the diagram

E(X , F i−1)
Ai−1

F

�
hF

i

E(X , F i)
Ai

F

�
hF

i+1

E(X , F i+1)yMi−1

xM−1
i−1

yMi

xM−1
i

yMi+1

xM−1
i+1

E(X , Ei−1)
Ai−1

E

�
hE

i

E(X , Ei)
Ai

E

�
hE

i+1

E(X , Ei+1).

(6.1)

Lemma 6.3. Let {Ai
E}i=0,1,...,N and {Ai

F }i=0,1,...,N be compatibility complexes for
differential operators AE and AF , respectively, i.e., A0

E = AE and A0
F = AF .

Then, if the operators AE and AF are equivalent, the compatibility complexes are
homotopy equivalent.

Proof. This is actually a result of homological algebra. For a proof, see for instance
Proposition 1.2.8 of [Tar95]. �

Let A ∈ Diff1(X ;E,F ) be a sufficiently regular first order operator. We choose a
coordinate neighbourhood U in X , over which the bundles E and F are trivial, with
coordinates x = (x1, . . . , xn). The coordinate xn is assumed to be chosen so that
the derivative ∂n appears in the local expression of A. Then one can decompose
the fibers E and F over U into direct sums Ck = Ck1 ⊕Ck2 and C` = C`1 ⊕C`2 in
such a way that k1 = `2 and, after a suitable isomorphism between Ck1 and C`2 ,
the operator A is written in the form

Au =
(

M (1) M (2)

∂n + T (1) T (2)

)(
u(1)

u(2)

)
, (6.2)

where the differential operators M (1), M (2) and T (1) do not contain the derivative
∂n.

The following definition is of crucial importance in the local construction of a
compatibility operator.

Definition 6.4. Commutativity relations are said to hold in (6.2) if, for some
differential operator S(1) in U which does not contain differentiation with respect
to xn, we have

M (1)
(
∂n + T (1)

)
=

(
∂n + S(1)

)
M (1),

M (1)T (2) =
(
∂n + S(1)

)
M (2) (6.3)

in U .

The importance of commutativity relations was first understood by Guillemin
[Gui68].

Lemma 6.5. Let commutativity relations hold in (6.2), and N be a compatibility
operator for (M (1),M (2)). Then

Bf =
( N 0

∂n + S(1) −M (1)

)( f (1)

f (2)

)
, (6.4)

is a compatibility operator for A in U , where f = f (1) ⊕ f (2) is a decomposition of
f ∈ E(U)` in accordance with the decomposition of F .
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Proof. A trivial verification shows that BA = 0 in U . The proof of the fact that B
is a “smallest” operator with this property is cumbersome. We refer the reader to
[Sam81]. �

In order to possess a local representation (6.2) with commutativity relations
fulfilled, the differential operator A should be of generic form.. Let us discuss this
in more details. A covector ξ0 ∈ T ∗pX is said to be quasiregular for A at a point
p ∈ X , if

dim kerσ(A)(p, ξ0) = min
ξ∈T∗pX\{0}

dim kerσ(A)(p, ξ).

For instance, each non-characteristic covector ξ0 ∈ T ∗pX for a differential operator
A is quasiregular.

Lemma 6.6. Let A be an involutive formally integrable first order differential op-
erator and x = (x1, . . . , xn) a coordinate system in U , such that the covector dxn

is quasiregular for A at each point p ∈ U . Then commutativity relations hold in
(6.2).

Proof. See [Sam81]. �

Assuming the coefficients of the operator S(1) to be undetermined, we obtain
from (6.3) a system of linear algebraic equations for the coefficients.

In this way we actually get an inductive procedure for constructing a compati-
bility operator.

Theorem 6.7. Suppose that A is a normalised differential operator of type E → F
on X , and U ⊂ X is a coordinate neighbourhood over which the bundles E
and F are trivial. Then, for an everywhere dense open set of coordinate systems
x = (x1, . . . , xn) in U :

1) The bundles E |U and F |U may be decomposed into direct sums

E |U = E(1) ⊕ . . .⊕ E(n+1),
F |U = F (1) ⊕ . . .⊕ F (n)

in such a way that A = A1 ⊕ . . .⊕An in U , where

Aju = ∂j

(
u(1) ⊕ . . .⊕ u(j)

)
+ T

(1)
j (x, ∂1, . . . , ∂j−1)

(
u(1) ⊕ . . .⊕ u(j)

)
+ T

(2)
j (x, ∂1, . . . , ∂j)

(
u(j+1) ⊕ . . .⊕ u(n+1)

)
;

2) For every 1 ≤ j ≤ n, the operator A1⊕ . . .⊕Aj (which contains the variables
(xj+1, . . . , xn) as parameters) is normalised, and the covector dxj is quasiregular
for it at each point p ∈ U .

Proof. See [Sam81]. �

The representation of a normalised operator A, as in 1), 2) of Theorem 6.7, is
called the normal form of (E.) Cartan.

Corollary 6.8. For each normalised differential operator A on X one can construct
in a finitely many steps a formally exact complex {Ai}i=0,1,...,N of normalised dif-
ferential operators on X , such that A0 = A.

Proof. See [Sam81]. �
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7. Overdetermined systems of ODE’s

Consider a first order system of ordinary differential operators on an open interval
X ⊂ R,

a1,1∂u1 + . . . + a1,k∂uk + b1,1u1 + . . . + b1,kuk = f1,
. . . . . .

a`,1∂u1 + . . . + a`,k∂uk + b`,1u1 + . . . + b`,kuk = f`,
(7.1)

where ai,j and bi,j are (`× k) -matrices of differentiable functions on X , and fi an
` -column of differentiable functions on X .

Our goal is to find conditions on the right-hand side fi both necessary and
sufficient for the local solvability of (7.1). To this end, we pick a point x0 ∈ X and
look for a solution uj to (7.1) in a neighbourhood of x0. We now apply the Gauß
algorithm to (7.1).

Keeping the coefficients at x0 we first apply the Gauß algorithm to the variables
∂u1, . . . , ∂uk, obtaining

a1,1∂u1 + . . . + a1,m∂um + . . . + a1,k∂uk + b1,1u1 + . . . + b1,kuk = f1,
. . . . . .

am,m∂um + . . . + am,k∂uk + bm,1u1 + . . . + bm,kuk = fm,
bm+1,1u1 + . . . + bm+1,kuk = fm+1,

. . .
b`,1u1 + . . . + b`,kuk = f`

(7.2)
with some new coefficients ai,j and bi,j , the right-hand side fi, and possibly rein-
dexed unknown functions uj . Note that m just amounts to the rank of the matrix
ai,j at x0, i.e..,

m = rank (ai,j(x0)) i=1,...,`
j=1,...,k

. (7.3)

We now proceed by applying the Gauß algorithm to the variables u1, . . . , uk in the
last ` −m equations (7.2). Since the Gauß algorithm includes possible reindexing
of the variables, the triangle structure of the first m equations may be violated.
However, the property (7.3) obviously survives under such transformations. We
thus get

a1,1∂u1 + . . .+ a1,k∂uk + b1,1u1 + . . .+ b1,nun + . . .+ b1,kuk =f1,
. . . . . . . . .

am,1∂u1 + . . .+am,k∂uk + bm,1u1 + . . .+ bm,nun + . . .+ bm,kuk =fm,
bm+1,1u1 + . . .+ bm+1,nun + . . .+ bm+1,kuk =fm+1,

. . .
bm+n,nun + . . .+bm+n,kuk =fm+n,

0=fm+n+1,
...

0=f`,
(7.4)

with some new coefficients ai,j and bi,j , the right-hand side fi, possibly reindexed
unknown functions uj , and

n = rank (bi,j(x0)) i=m+1,...,`
j=1,...,k

. (7.5)

Obviously, the ranks m and n do not depend on each other, for we can start
with a system (7.2) of arbitrary form. Both m and n are ≤ k and m + n ≤ `.
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From (7.4) we readily deduce that for the local solvability of (7.1) near x0 it is
necessary that

fm+n+1(x0) = 0,
...

f`(x0) = 0.

(7.6)

The case n = 0 is not excluded. In this case the conditions fm+1 = . . . = f` = 0
near x0 are necessary and sufficient for the existence of a solution to (7.1) in a
neighbourhood of x0, provided that a non-degeneracy conditions for the coefficients
is fulfilled. Indeed, it is sufficient to fix arbitrary um+1, . . . , uk and to solve the
initial problem for the first m equations in (7.2) with data at x0, which is possible
by the Peano theorem.

If n ≥ 1, the task is to solve the subsystem of (7.4) that contains the unknown
functions u1, . . . , uk only. This gives

u1 = fm+1/bm+1,1 + c1,n+1un+1 + . . .+ c1,kuk,
. . .

un =fm+n/bm+n,n +cn,n+1un+1 + . . .+cn,kuk,
(7.7)

and so the number of unknown functions is diminished. Substituting (7.7) into the
first m equations of (7.4) yields

a1,n+1∂un+1 + . . . + a1,k∂uk + b1,n+1un+1 + . . . + b1,kuk = a1(x0, ∂)f,
. . . . . .

am,n+1∂un+1 + . . . + am,k∂uk + bm,n+1un+1 + . . . + bm,kuk = am(x0, ∂)f,
(7.8)

where

ai(x0, ∂)f = fi −
n∑

j=1

ai,j∂ (fm+j/bm+j,j)−
n∑

j=1

bi,j (fm+j/bm+j,j)

for i = 1, . . . ,m.
The system (7.8) is actually of the same form as (7.1), but the number of un-

known functions in (7.8) is n less than that in (7.1). Moreover, the right-hand side
of (7.8) contains the derivatives of f1, . . . , fm+n. Hence, we can apply the Gauß
algorithm once again, thus obtaining necessary conditions for solvability of (7.8) in
the form

ao+p+1f (x0) = 0,
...

amf (x0) = 0
(7.9)

along with a new system of the form (7.1) containing a smaller number of unknown
functions.

This process terminates giving conditions on the right-hand side f of (7.1) which
are necessary and sufficient for the solvability of this system in a neighbourhood of
x0 ∈ X . By (7.6) and (7.9), they are of the form

A0f = 0,
A1f = 0,

...
AQf = 0,

(7.10)
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where Ai is a matrix of linear differential operator of order i near x0.. The construc-
tion shows that Ai contains mi−1 − (mi + ni) rows and ` columns, with m−1 = `.
Thus, (7.10) contains ` − n0 − . . . − nQ −mQ equations, which suggests that the
compatibility operator for this system is zero. Note that the order of (7.10) does
not exceed `− 2.

It remains to make explicit the non-degeneracy condition for the coefficients of
(7.1) which is used in the construction. We started by applying the Gauß algo-
rithm to the matrix (ai,j) at x0 obtaining m linearly independent rows. Since
the coefficients ai,j are continuous functions, the rang of the matrix is a lower
semicontinuous function. Hence there is a neighbourhood U of x0, such that
rank(ai,j(x)) ≥ rank(ai,j(x0)) for all x ∈ U . If there is a point x ∈ U , such
that rank(ai,j(x)) > rank(ai,j(x0)), then the Gauß algorithm at x gives more than
m linearly independent rows. However, these destroyed at the point x0, thus re-
sulting in singularities of the resolution operator. To avoid such a situation which
should require special study we assume that the rang of (ai,j) is constant in a
neighbourhood of x0, i.e.,

m = rank (ai,j(x)) i=1,...,`
j=1,...,k

. (7.11)

for all x ∈ U , cf. (7.3).
The same remains true concerning the Gauß algorithm applied to the matrix

(bi,j) i=m+1,...,`
j=1,...,k

. We require

n = rank (bi,j(x)) i=m+1,...,`
j=1,...,k

(7.12)

for all x ∈ U , otherwise we don’t get any regular resolution operator on all of U .
The question arises whether (7.12) can be formulated in a more invariant way

which is independent of the splitting of (bi,j) caused by the transformation of (ai,j).
The answer seems to be negative, i.e., in these terms the non-degeneracy condition
cannot be improved.

The same reasoning applies to (7.8), where the matrix (ai,j) is constructed from
the genuine matrices (ai,j) and (bi,j) of (7.1) by linear algebra. On the other hand,
the matrix (bi,j) in (7.8) is constructed not only from the elements of matrices (ai,j)
and (bi,j) in (7.1), but also from their derivatives. The matrix (bi,j) occurring this
way at the last step is constructed from the derivatives of the genuine matrices
(ai,j) and (bi,j) up to at most order l − 1.

Summarising, we conclude that the non-degeneracy condition in question for
the coefficients of (7.1) consists of constant rank assumptions for some matrices
explicitly constructed from the coefficients of the system (7.1) and their derivatives
up to order l − 1.

8. A formal Cauchy-Kovalevskaya theorem

In this section we discuss a version of the Cauchy-Kovalevskaya theorem in the
class of smooth sections of jet bundles over X . For this purpose, given a multi-
index α = (α1, . . . , αn), we set α′ = (α1, . . . , αn−1). This enables us to write the
components of jets as uα = uα′,αn

.
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Theorem 8.1. Suppose rank E = rankF , A(0,a) = I and s ∈ N0 ∪ {∞} satisfies
s ≥ a. Then, given any

f ∈ E(U, Js−a(F )),
u(j) ∈ E(U, Js−j(E)), j = 0, 1, . . . , a− 1,

there exists a unique u ∈ E(U, Js(E)) satisfying

h(js−aA)u (x, z) = f(x, z),
h(js−j∂j

n)u (x, (z′, 0)) = u(j)(x, (z′, 0)), j = 0, 1, . . . , a− 1,
(8.1)

for all (x, z) ∈ U × Cn.

Proof. Fix x ∈ U . Using (4.7) we conclude that (8.1) is equivalent to the system of
linear algebraic equations

A(0,a)(x)(αn+a)uα+aen
(x) +

∑
|β|≤a

β 6=aen
β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x) = fα(x),

u(α′,j)(x) = u
(j)
(α′,0)(x),

(8.2)
for |α| ≤ s− a and for j = 0, 1, . . . , a− 1 and |α′| ≤ s− j.

We now argue by induction in αn ∈ N0. Indeed, the second part of equations
in (8.2) implies readily that the coefficients u(α′,j) are uniquely determined for all
j = 0, 1, . . . , a− 1 and |α′| ≤ s− j. By the very setting, these coefficients belong to
E(E,U).

Let r be an integer with a ≤ r < s. Suppose that all the coefficients u(α′,j) with
0 ≤ j ≤ r and |α′| ≤ s − j are uniquely defined and belong to E(U,E). Then the
first equations in (8.2) implies that

u(α′,r+1)(x) =
1

r + 1

(
f(α′,r+1−a)(x)−

∑
|β|≤a

β 6=aen
β≤γ≤(α′,r+1−a)+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x)
)

(8.3)
for all αn = r + 1− a and |α′| ≤ s− (r + 1− a).

It is clear that γn ≤ r + 1 − a + βn ≤ r on the right-hand side of (8.3), i.e.,
all the coefficients uγ are already uniquely determined and belong to E(U,E) by
assumption. Therefore, the coefficients u(α′,r+1) with |α′| ≤ s− (r+1) are uniquely
defined, too, and belong to E(U,E).

Thus, we have proved that there exists a unique u ∈ E(U, Js(E)) satisfying (8.2)
for all x ∈ U , as desired. �

For an increasing multi-index J = (j1, . . . , jk) with 1 ≤ j1 < . . . < jm ≤ n, we
choose a group of variables x(J) = (xj1 , . . . , xjm). Write ds

x(J) for the “connection”
acting in x(J), i.e.,(

ds
x(J)u

)
(x, z) =

∑
|α|≤s−1

( ∑
j∈J

(
∂xj uα(x)− (αj + 1)uα+ej (x)

)
dxj

)
zα

cf. (4.1).

Lemma 8.2. Under the hypothesis of Theorem 8.1, if moreover n 6∈ J and

ds−a
x(J)f = 0,

ds−j
x(J)u

(j) = 0, j = 0, 1, . . . , a− 1,
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in U , then ds
x(J)u = 0 in U .

Proof. Since n 6∈ J , Lemma 4.4 yields(
h(js−1−aA)⊗ I

)
ds

x(J)u (x, z) = ds−a
x(J)h(js−aA)u (x, z)

= ds−a
x(J)f (x, z)

= 0

and (
h(js−1−j∂j

n)⊗ I
)
ds

x(J)u (x, (z′, 0)) = ds−j
x(J)h(js−j∂j

n)u (x, (z′, 0))

= ds−j
x(J)u

(j) (x, (z′, 0))
= 0

for all j = 0, 1, . . . , a − 1. Using Theorem 8.1 we deduce that ds
x(J)u = 0 in U , as

desired. �

As defined above, the actions of A and h(j∞A)u on sections of the formal series
bundle J(E) ∼= J∞(E) coincide. Hence we will write h(j∞A) simply A when no
confusion can arise.

Lemma 8.3. Let ` ≥ k and rank A(0,a)(x) = k for all x ∈ U . If u ∈ E(U, J∞(E))
satisfies Au = 0 and u(α′,j) = 0 for all α′ ∈ Nn−1

0 and 0 ≤ j ≤ a− 1, then u = 0.

Proof. From h(j∞A)u = 0 we conclude that∑
|β|≤a

β≤γ≤α+β

∂α+β−γAβ(x)
(α + β − γ)!

γ!
(γ − β)!

uγ(x) = 0 (8.4)

in U for all α ∈ Nn
0 .

We argue by induction with respect to αn ∈ N0. Setting αn = 0 in (8.4) yields
β ≤ γ ≤ (α′, 0) + β whence γn = βn. Since |β| ≤ a, we get γn ≤ a. By assumption,
u(γ′,j) = 0 for all γ′ and 0 ≤ j ≤ a − 1. Hence it follows for all multi-indices
α′ ∈ Nn−1

0 that ∑
γ′≤α′

∂(α′−γ′,0)A(0,a)(x)
(α′ − γ′)!

a!u(γ′,a)(x) = 0

in U .
Substituting α′ = 0 into this equality gives A(0,a)(x)u(0,a)(x) = 0 at each point

x ∈ U . Since the rank of A(0,a) is equal to k in U , we conclude that u(0,a) vanishes
in U . Substituting α′ = e′j for 1 ≤ j ≤ n − 1 yields A(0,a)(x)u(α′,a)(x) = 0 for all
x ∈ U , and so u(α′,a) = 0 in U for all α′ ∈ Nn−1

0 with |α′| = 1, and so on. We
can now proceed in this manner obtaining u(α′,a) = 0 in U for all multi-indices
α′ ∈ Nn−1

0 .
If now u(γ′,j) = 0 for all γ′ and 0 ≤ j ≤ s, where s ≥ a, we apply the same

reasoning again, with αn = 0 replaced by αn = s− (a− 1), to obtain u(α′,s+1) = 0
in U for all multi-indices α′ ∈ Nn−1

0 .
We have thus proved that uα = 0 for all multi-indices α ∈ Nn

0 , i.e., u = 0 in U ,
as desired.

�
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9. Cohomology of formal power series

Throughout this section we assume that A ∈ Diffa(X ;E,F ) is a sufficiently
regular operator on X .

Lemma 9.1. Let AE and AF be equivalent differential operators of type E0 → E1

and F 0 → F 1 on X , respectively, and BE and BF be their compatibility operators
of type E1 → E2 and F 1 → F 2. Then the complexes

E(X , J(E0)) AE→ E(X , J(E1)) BE→ E(X , J(E2))
E(X , J(F 0)) AF→ E(X , J(F 1)) BF→ E(X , J(F 2))

are homotopy equivalent.

Proof. By Lemma 6.3, the complexes {AE , BE} and {AF , BF } are homotopy equiv-
alent. This means, there exist differential operators Mi of type F i → Ei and M−1

i

of type Ei → F i, for i = 0, 1, 2, and differential operators hE
i of type Ei → Ei−1

and hF
i of type F i → F i−1, for i = 1, 2, with the property that the following

conditions are fulfilled:

1) Mi+1A
i
F −Ai

EMi = 0, 2) M−1
i Mi = I − hF

i+1A
i
F −Ai−1

F hF
i ,

M−1
i+1A

i
E −Ai

F M−1
i = 0; MiM

−1
i = I − hE

i+1A
i
E −Ai−1

E hE
i

for i = 0, 1, where A0
E = AE , A1

E = BE and A0
F = AF , A1

F = BF . We now apply
Lemma 4.3 to obtain

1) h(j∞Mi+1)h(j∞Ai
F )− h(j∞Ai

E)h(j∞Mi) = 0,
h(j∞M−1

i+1)h(j∞Ai
E)− h(j∞Ai

F )h(j∞M−1
i ) = 0;

2) h(j∞M−1
i )h(j∞Mi) = I − h(j∞hF

i+1)h(j∞Ai
F )− h(j∞Ai−1

F )h(j∞hF
i ),

h(j∞Mi)h(j∞M−1
i ) = I − h(j∞hE

i+1)h(j∞Ai
E)− h(j∞Ai−1

E )h(j∞hE
i )

for i = 0, 1. This shows immediately that the complexes of bundle homomorphisms
{h(j∞AE), h(j∞BE)} and {h(j∞AF ), h(j∞BF )} are homotopy equivalent, which
is the desired conclusion. �

In particular, both the complexes have the same cohomology, see for instance
Corollary 1.1.14 in [Tar95].

We next extend Theorem 5.6 to the case s = ∞. The proof given above does
not go in the case s =∞, for in no way it is obvious that the columns in (5.5) are
exact.

Theorem 9.2. Let A be a sufficiently regular differential operator on X and B a
compatibility operator for A. Then, if U is sufficiently small, for each formal power
series f ∈ E(U, J(F )) satisfying Bf = 0 in U there exists a formal power series
u ∈ E(U, J(E)) with Au = f .

Proof. In view of Theorem 6.2 and Lemmas 6.3 and 9.1 we may assume without
loss of generality that:

1) U is a coordinate neighbourhood in X over which the bundles E and F are
trivial.

2) A is a normalised operator of the form (6.2).
3) Commutativity relations hold in (6.2) for coordinates x = (x1, . . . , xn) in

U .
4) The compatibility operator B for A is given by (6.4).
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Write

A =
n∑

j=1

Aj(x)∂j + A0(x),

for x ∈ U . We now invoke induction in m ∈ {1, . . . , n}, the number of non-zero
coefficients Aj(x). We can assume, by renumbering the coefficients if necessary,
that the non-zero coefficients are An−m+1(x), . . . , An(x).

If m = 1, then we argue as follows. By Definition 6.1, the system Au = 0 does
not contain purely algebraic relations between components (u1, . . . , uk) of u. More
precisely, A has the form

Au =
(
∂n + T (1)(x)

)
u(1) + T (2)(x, ∂n)u(2)

for u ∈ E(U,E), cf. (6.2).
Since both M (1) and M (2) vanish for m = 1, we see that B = 0 in this case.

Hence, the desired result follows immediately from Theorem 8.1. Indeed, choose
u(2) ∈ E(U, J(Ck2)) and the data u

(1,0)
α′ ∈ E(U, Ck1), for α′ ∈ Nn−1

0 , in an arbi-
trary way. Then we apply Theorem 8.1 to the operator D = ∂n + T (1)(x), when
considering the Cauchy problem

h(j∞D)u(1) (x, z) = f(x, z)− h(j∞T (2))u(2) (x, z),
u

(1)
(α′,0)(x) = u

(1,0)
α′ (x), α′ ∈ Nn−1

0 ,

for x ∈ U , cf. (8.1). As a result we get a unique solution u(1) ∈ E(U, J(Ck1)) of
this problem. By the very construction, u = u(1) ⊕ u(2) belongs to E(U, J(E)) and
satisfies Au = f .

For m > 1, the operator M = (M (1),M (2)) of (6.2) contains the derivatives
in xn−m+1, . . . , xn−1 only. The inductive hypothesis allows us to assume that the
complex {M,N} is exact on the level of formal power series over U . More pre-
cisely, let f ∈ E(U, J(F )) satisfy h(j∞B)f = 0. When writing f = f (1) ⊕ f (2)

with components f (i) ∈ E(U, J(C`i)), i = 1, 2, we obtain h(j∞N)f (1) = 0 in U .
Hence, there exists a formal power series v ∈ E(U, J(E)) with the property that
h(j∞M)v = f (1).

We now write v = v(1) ⊕ v(2) in accordance with the bundle decomposition
Ep
∼= Ck1 ⊕ Ck2 over U . Denote by D the differential operator in the lower left

corner of A, i.e.,
D = ∂n + T (1)(x, ∂n−m+1, . . . , ∂n−1).

By Theorem 8.1, there is a unique formal power series u(1) ∈ E(U, J(Ck1)) solving
the Cauchy problem

h(j∞D)u(1) (x, z) = f (2)(x, z)− h(j∞T (2))v(2) (x, z),
u

(1)
(α′,0)(x) = v

(1)
α′ (x), α′ ∈ Nn−1

0 ,

for x ∈ U , cf. (8.1). Set u(2) = v(2). By construction, the sum u = u(1) ⊕ u(2) is in
E(U, J(E)) and satisfies (∂n + T (1))u(1) + T (2)u(2) = f (2).

Our next claim is that Mu = f (1), the action of M being identified with that of
h(j∞M). To prove this, we observe that commutativity relations (6.3) just amount
to

(∂n + S(1))Mu = M (1)((∂n + T (1))u(1) + T (2)u(2))
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for all u ∈ E(U, J(E)). Since Bf = 0 in U , we get (∂n + S(1))f (1) = M (1)f (2), and
so

(∂n + S(1))(Mu− f (1)) = (∂n + S(1))Mu− (∂n + S(1))f (1)

= M (1)((∂n + T (1))u(1) + T (2)u(2))−M (1)f (2)

= 0.

By construction, the coefficients (u(1)−v(1))(α′,0) vanish in U for all multi-indices
α′ ∈ Nn−1

0 . Moreover, from u(2) = v(2) it follows that

(Mu− f (1))(α′,0) = (Mu−Mv)(α′,0)
= (M (1)(u(1) − v(1)))(α′,0). (9.1)

Since the operator M (1) contains the derivatives in xn−m+1, . . . , xn−1 only, we
deduce from (9.1) that

(Mu− f (1))(α′,0) = 0

for all α′ ∈ Nn−1
0 .

Finally, the solution of the Cauchy problem for the operator ∂n + S(1) in the
class of formal power series is unique, which is due to Theorem 8.1. Therefore,
Mu− f (1) = 0 in U , as desired. �

If the coefficients of the operator A and the right-hand side f are real analytic
in U then among the formal solutions of Au = f in U constructed in Theorem 9.2
there are also real analytic ones, see for instance Theorem 1.3.40 of [Tar95]. To
construct such a solution, one has to choose “proper” real analytic data for the
Cauchy problem and use the Cauchy-Kovalevskaya theorem instead of its formal
version given by Theorem 8.1.

Lemma 9.3. Let s ∈ N0 ∪ {∞} satisfy s ≥ a. Assume that u ∈ E(X , Js(E)),
f ∈ E(X , Js−a(F )) and h(js−aA)u = f . Then f is (s − a) -jet of some section in
E(X , F ) if and only if

(h(js−1−aA)⊗ I)dsu = 0.

Proof. Indeed, under the hypothesis of the lemma, Lemma 4.4 implies that

(h(js−1−aA)⊗ I)dsu = ds−a h(js−aA)u
= ds−af.

Since f stems from some section in E(X , F ) if and only if ds−af = 0, the lemma
follows. �

When combined with Lemma 9.3, Theorem 9.2 implies that the cohomology
of (5.3) depends on the structure of the space of solutions to the homogeneous
equation h(j∞A)u = 0. Indeed, if f is a formal power series of some section in
E(U,F ) satisfying Bf = 0, then the solution u ∈ E(U, J(E)) given by Theorem 9.2
is not arbitrary. Namely, the image du of u by the connection proves to belong to
Ω1(U,R∞).

Recall that by R∞ is meant the null-space of the vector bundle homomorphism
h(j∞A) : J(E) → J(F ). This fibre space over X need not behave well unless
A is a sufficiently regular differential operator. In the latter case R∞ is a vector
subbundle of generically infinite rank in J(E). We are now in a position to extend
Theorem 5.6 to the case s =∞.
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Theorem 9.4. Let A ∈ Diffa(X ;E,F ) be a sufficiently regular differential opera-
tor and {Ai}i=0,1,... a compatibility complex for A. Then the cohomologies of the
complexes

0 → Sker A(U)
j∞→ E(U,R∞) d→ Ω1(U,R∞) d→ . . .

d→ Ωn(U,R∞) → 0,

0 → Sker A(U) ↪→→ E(U,E0) A0

→ E(U,E1) A1

→ . . .
An−1

→ E(U,En) → . . .

are the same, provided that U is small enough.

Proof. The relationship between the complexes in question is expressed by the
diagram

0 0 0
↓ ↓ ↓

0 → Sker A(X)
j∞→ E(U,R∞) d→ Ω1(U,R∞) d→ . . .

| | |
↪→ ↪→ ↪→

↓ ↓ ↓
0 → E(U,E0)

j∞→ E(U, J(E0)) d→ Ω1(U, J(E0)) d→ . . .
| | |

A0 h(j∞A0) h(j∞A0)⊗I

↓ ↓ ↓
0 → E(U,E1)

j∞→ E(U, J(E1)) d→ Ω1(U, J(E1)) d→ . . .
| | |

A1 h(j∞A1) h(j∞A1)⊗I

↓ ↓ ↓
. . . . . . . . .

(9.2)

which commutes. From the exactness of the first Spencer sequence for the trivial
operator and Theorem 9.2 we deduce that the rows and columns in the diagram
are exact except possibly for the first row and first column. Thus by diagram
chasing the cohomology of the first row is the same as the cohomology of the first
column. �

One may ask whether Theorem 9.4 is still true if U = X but we will not develop
this point here.

Similarly to (5.4) we get the complex of sheaves

0→ Sker A
j∞→ SR∞

d→ SR∞⊗Λ1
d→ . . .

d→ SR∞⊗Λn → 0 (9.3)

over X , which will be referred to as the limit first sequence of Spencer for the
operator A.

Corollary 9.5. Let Ai ∈ Diffai(X ;Ei, Ei+1), i = 0, 1, . . ., be a compatibility com-
plex for a sufficiently regular differential operator A = A0. Then the cohomology of
the complex

0→ Sker A
↪→→ SE0

A→ SE1
A→ . . .

A→ SEn → . . .

coincides with the cohomology of the limit first sequence of Spencer for A..

Proof. This is an immediate consequence of Theorem 9.4. �
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We have thus reduced the problem on solvability of an overdetermined system
of differential equations with smooth coefficients to the following one. Under what
conditions does a connection d of zero curvature on a vector bundle R of infinite
rank give rise to Fredholm complexes of differential forms with coefficients in the
bundle R?

Of course, we can consider the limit first sequence of Spencer also for those
differential operators which possess no regularity property. However, in this case
this sequence need not bear any information about the cohomology of the initial
complex.

Example 9.6. Let Au := au be the operator of Example 2.3 and U = R. Then
u ∈ E(U,R∞) if and only if

α∑
γ=0

a(α−γ)(x)
(α− γ)!

uγ(x) = 0

in U for all α ∈ N0. Obviously, this holds if and only if a(x)uγ(x) = 0 for all
x ∈ U and γ ∈ N0, i.e., uγ ∈ Sker A(U). Thus, we can identify E(U,R∞) with the
product of countably many copies of Sker A(U). Now we easily see that the limit
first sequence of Spencer for the operator A

0→ Sker A(U)
j∞→ E(U,R∞) d→ Ω1(U,R∞)→ 0

is exact over U . Indeed, the exactness at steps 0 and 1 has already been discussed.
As to exactness at step 2, we note that each f ∈ Ω1(U,R∞) has the form

f(x, z) =
( ∑

α∈N0

fα(x)zα
)
dx

in U . Take
u0 = 0,
uα = u′α−1 − fα−1

for α ≥ 1. Since u′α−1 belongs to Sker A(U) if so does uα−1, we conclude that
u ∈ E(U,R∞) and du = f , as desired. On the other hand, the operator A itself
does not admit a compatibility complex on the level of sheaves of germs of smooth
functions over U at all..

10. Holonomic systems

In this section we treat overdetermined systems maximally closed to systems of
ordinary differential equations.

Definition 10.1. A differential operator A of type E → F on X is said to be
holonomic if:

1) A is sufficiently regular.
2) There is Q ∈ N0 such that the symbolic bundles σs of the (s − a) th pro-

longation js−a ◦A are zero for all s ≥ Q.

Roughly speaking, a holonomic system is a highly overdetermined system, such
that the solutions locally form a vector space of finite dimension, instead of the
expected dependence on some arbitrary function. Such systems have been applied,
for example, to the Riemann-Hilbert problem in higher dimensions, and to quantum
field theory, cf. [Kas75, Kas78].
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Theorem 10.2. Let A be holonomic and U be a simply connected small domain.
Then for each f ∈ E(U,F ) satisfying Bf = 0 in U there exists u ∈ E(U,E) with
Au = f .

Another way of stating this theorem is to say: a C∞ Poincaré lemma holds for
holonomic systems.

Proof. Since A is holonomic, the bundle homomorphism πs−1,s : Rs → Rs−1 is
actually an isomorphism for sufficiently large s. This means, in particular, that the
bundle R∞ is isomorphic to RQ, and so it has a finite rank r ≥ 0. Hence, for each
p ∈ X we can find a neighbourhood U of p and a finite basis {b1(x), . . . , br(x)} in
E(U,R∞)..

More precisely, we mean the following:
1) The system {b1(x), . . . , br(x)} is linearly independent over the ring E(U).
2) For every u ∈ E(U,R∞) there are (unique) coefficients ck ∈ E(U) with the

property that

u(x, z) =
r∑

k=1

ck(x)bk(x, z)

whenever x ∈ U .
From 2) it follows that for any u ∈ Ωq(U,R∞) there are (unique) differential

forms ck ∈ Ωq(U), such that

u(x, z) =
r∑

k=1

ck(x)bk(x, z)

whenever x ∈ U . Then

dqu (x, z) =
r∑

k=1

dck(x) bk(x, z) + (−1)qck(x) ∧ d0bk(x, z)

for all x ∈ U . As d0bk ∈ Ω1(U,R∞), we conclude that there are differential forms
tjk ∈ Ω1(U) with

d0bk(x, z) =
r∑

j=1

tjk(x)bj(x, z).

Note that d1d0 = 0 implies

dtjk(x)−
r∑

`=1

tj`(x) ∧ t`k(x) = 0 (10.1)

for all x ∈ U and 1 ≤ j, k ≤ r.
Thus, under the local “basis” {b1(x), . . . , br(x)} the operator dq may be repre-

sented as d̃q mapping Ωq(U)r to Ωq+1(U)r by

(d̃qc)j = dcj +
r∑

k=1

tjk ∧ ck,

c being an r -column with components c1, . . . , cr. By the very construction, the
new complex {Ωq(U)r, d̃q}q=0,1,...,n is equivalent to the first Spencer sequence and
so it gives us a compatibility complex for d̃0.
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For q = 0, we get

(d̃0c)j = dcj +
n∑

`=1

( r∑
k=1

tjk,` ck
)
dx`, (10.2)

which gives rise to a Frobenius type system, see for instance [Har64]. �

11. A homotopy operator

Since (dsu)(x, z) = du(x, z − x) for s = ∞, one can try to invoke the classical
Poincaré-Cartan homotopy operator, to treat the inhomogeneous equation du = f
for any f ∈ Ωq(U,R∞) satisfying df = 0. Let U is a star-shaped domain in Rn.
There is no loss of generality in assuming that U is star-shaped with respect to the
origin.

Given any

f(x, z − x) =
∑

#I=q

′( ∑
α∈Zn

0

fI,α(x)(z − x)α
)
dxI ,

the homotopy operator of Poincaré-Cartan is

(hqf)(x, z − x) =
∫ 1

0

dt c f(tx, z − tx) dt

=
∑

#I=q

′( ∫ 1

0

tq−1
∑

α∈Zn
0

fI,α(tx)(z − tx)α dt
)
ι(X)dxI

for (x, z) ∈ U × Cn, where

ι(X)dxI =
q∑

k=1

(−1)k−1xikdxI [ik]

stands for the interior product of the differential form dxI by the vector field
X = x1∂1 + . . . + xn∂n, and dxI [ik] is the exterior product of the differentials
dxi1 , . . . , dxiq with the exception of dxik .

Using the binomial formula

(z − tx)α =
∑
β≤α

α!
(α− β)!β!

(z − x)α−β((1− t)x)β ,

we introduce (hqf)(x, z) = 0, if q = 0, and

(hqf)(x, z) =
∑

#I=q

′( ∑
α∈Zn

0
β≤α

α!
(α−β)!β!

∫ 1

0

tq−1fI,α(tx)((1−t)x)β dt zα−β
)
ι(X)dxI

=
∑

#I=q

′( ∑
γ∈Zn

0

cI,γ(f)zγ
)
ι(X)dxI , (11.1)

if q ≥ 1, where

cI,γ(f)(x) =
∑

β∈Zn
0

( (γ + β)!
γ!β!

∫ 1

0

tq−1(1−t)|β|fI,γ+β(tx)dt
)
xβ .

The second line on the right-hand side of (11.1) just amounts to the formal (sic!)
homotopy operator for the complex (9.3) constructed by Buttin [But67]. The ho-
motopy operator is formal, for the coefficients cI,γ(f) are actually formal series in
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the powers of x which need not converge. She proved that hf makes sense if the
components of the jet f are real analytic and satisfy the Cauchy inequality in U ,
i.e., if f corresponds to a real analytic solution to the equation Af0 = 0 in U .
Moreover, the operator h obeys the structure of Ωq(U,R∞), at least formally. She
also illustrated how the formal homotopy operator h may be used to obtain an easy
proof of the analytic Poincaré lemma for formally exact complexes of differential
operators with real analytic coefficients and a C∞ Poincaré lemma for elliptic com-
plexes of such operators. We wish to extend this construction to the C∞ case. To
this end we observe that the first line in (11.1) makes sense for all C∞ functions
fI,α in U as certain rearrangement of a formal power series in z whose coefficients
are themselves series of functions which diverge in general. It cannot therefore be
specified within infinite jets, and so it is no longer an element of Ωq−1(U,R∞).
We thus arrive at objects of more general structure which allow one to solve the
equation du = f .

Theorem 11.1. Suppose U is a domain in Rn star-shaped with respect to the
origin. Then, for all f ∈ Ωq(U,R∞) with q ≥ 1, we have

hq+1dqf + dq−1hqf = f (11.2)

in U . Moreover, u = hqf belongs to Ωq−1(U,R∞) provided that the relevant series
converge.

Proof. This readily follows from the homotopy formula of Poincaré-Cartan once we
allow formal computations. �

We finish this section by analysing the homotopy formula (11.2) in the case of
operator Au = du − au acting on scalar-valued functions in a star-shaped domain
U ⊂ Rn, where a ∈ Ω1(U). The system du− au = f is obviously of Frobenius type
with r = 1.

It follows from formula (4.7) that u ∈ J∞x (U ×C) belongs to R∞(x) if and only
if

uα+ej =
1

αj + 1

∑
γ≤α

∂α−γaj(x)
(α− γ)!

uγ (11.3)

for all α ∈ Zn
0 and 1 ≤ j ≤ n.

It is easy to see that for the system (11.3) to possess a nontrivial solution at the
point x ∈ U it is necessary and sufficient that

∂

∂xk
aj(x) =

∂

∂xj
ak(x) (11.4)

for all 1 ≤ j, k ≤ n. If (11.4) is not fulfilled, the rank of R∞(x) is therefore equal
to zero.

If (11.4) holds then we prove by induction that a solution to (11.3) is of the form
u = u0b(x), where b(x) = (1, a1(x), . . . , an(x), . . .) is independent on u0. Hence, the
rank of R∞(x) is equal to one in this case.

Thus, the operator A = d− a is sufficiently regular over U merely in two cases:
1) (11.4) is satisfied for all x ∈ U ; 2) (11.4) does not fulfil at any point x ∈ U .
Obviously, the condition 1) just amounts to saying that da(x) is different from zero
for all x ∈ U . The condition 2) is equivalent to the fact that da(x) = 0 for all
x ∈ U . Note that the latter equality precisely coincides with (10.1) for r = 1 with
t11 = −a.
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In case da = 0 in U the Poincaré-Cartan operator is well defined not only
formally. In this case we can easily specify the basis in R∞(x). More precisely, we
claim that u ∈ R∞(x) if and only if

uα = u0 e−
∫ x a 1

α!
∂αe

∫ x a (11.5)

for all α ∈ Zn
0 , where

∫ x
a is a primitive function for a in a neighbourhood of x. To

prove this, we argue by induction.
For α = 0 the equality is obvious. For α ∈ Zn

0 of norm 1 formula (11.3) readily
implies uej = aj(x) for j = 1, . . . , n, as desired. If now (11.5) is true for all α ∈ Zn

0

of norm ≤ s, then for |α| = s we get

uα+ej
= u0 e−

∫ x a 1
αj + 1

∑
γ≤α

1
(α− γ)!γ!

∂α−γaj(x) ∂γe
∫ x a

= u0 e−
∫ x a 1

(α + ej)!
∂α

(
aj(x)e

∫ x a
)

= u0 e−
∫ x a 1

(α + ej)!
∂α+ej e

∫ x a

by (11.3), which was to be proved.
From what has been proved it follows that the non-zero jet j∞(e

∫ x a)(x, z),
x ∈ U , forms a basis in E(U,R∞) over the ring E(U).

Therefore, for every f ∈ Ωq(U,R∞) there is a differential form c ∈ Ωq(U) with
the property that f(x, z) = c(x)j∞(e

∫ x a)(x, z) for x ∈ U . Substituting this into
(11.1) yields

(hqf)(x, z)

=
∑

#I=q

′( ∑
γ∈Zn

0

∫ 1

0

tq−1cI(tx)
1
γ!

∑
β∈Zn

0

1
β!

∂β
(
∂γe

∫ x a
)
(tx)(x− tx)βdtzγ

)
ι(X)dxI

=
∑

#I=q

′( ∑
γ∈Zn

0

∫ 1

0

tq−1cI(tx) j∞
(∂γe

∫ x a

γ!

)
(tx, x− tx)dt zγ

)
ι(X)dxI

for q ≥ 1.
If the differential form a is real analytic on U then its primitive

∫ x
a is real

analytic, too, and so

(hqf)(x, z) =
∑

#I=q

′( ∫ 1

0

tq−1cI(tx) dt
)
ι(X)dxI j∞

(
e
∫ x a

)
(x, z)

= (hqc)(x) j∞
(
e
∫ x a

)
(x, z)

for all x ∈ U . This fact hints us to introduce a “regularisation” of the Buttin
homotopy operator by h̃0f = 0 and (h̃qf) = (hqc) j∞(e

∫ x a), if q > 0. By the
very construction, h̃q maps Ωq(U,R∞) to Ωq−1(U,R∞). As d(c j∞u) = dc j∞u,
we easily deduce that

h̃q+1dqf + dq−1h̃qf = f

for q ≥ 1.
Since (da)u = a ∧ (Au) − d(Au), we arrive at the following topic of E. Cartan

theory.
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If da is different from zero at each point of U , then the equation Au = f is
solvable in E(U) if and only if f ∈ Ω1(U) satisfies

(∂jai − ∂iaj)((∂` − a`)fk − (∂k − ak)f`) = (∂`ak − ∂ka`)((∂j − aj)fi − (∂i − ai)fj)

for all integers 1 ≤ i, j, k, ` ≤ n. Moreover, the solution is unique and it is given by
the formula

u =
(∂j − aj)fi − (∂i − ai)fj

∂jai − ∂iaj

provided i 6= j. In particular, u ≡ 0 if f ≡ 0.
If the differential form a is closed in U , then the equation Au = f is solvable in

E(U) if and only if f ∈ Ω1(U) fulfills df − a ∧ f = 0 in U . Moreover, the function
family

u(x) = e
∫ x a

( n∑
j=1

xj

∫ 1

0

e−
∫ tx afj(tx)dt + const

)
is a general solution to the inhomogeneous equation Au = f . In particular, we get
u = c e

∫ x a if f = 0.
We thus conclude that in both cases the space E(U,R∞) is generated by the set

j∞(Sker A(U)) over the ring E(U).

Remark 11.2. For a = x3
2dx1−x3

1dx2 in R2 we have da = −3|x|2dx, and so A is not
sufficiently regular in any neighbourhood U of the origin. The solution to Au = f
in U \ {0} is given by

u =
(∂2 + x3

1)f1 − (∂1 − x3
2)f2

3(x2
1 + x2

2)
,

hence the conditions for the existence of a smooth solution in U are obvious. How-
ever, they are not differential.

12. Frobenius type systems

We begin by discussing overdetermined differential operators with null-spaces
of finite dimension whose compatibility complexes are essentially closed to the de
Rham complex.

To this end, we recall the so-called uniqueness condition for the Cauchy problem
in the small on X , denoted by (U)s: Given any connected open set U ⊂ X , if
u ∈ Sker A(U) vanishes on a nonempty open subset of U then u ≡ 0 on all of U .
This property implies in particular the existence of a left fundamental solution for
A on X .

Lemma 12.1. Suppose U is a connected open set in X . If a differential operator A
satisfies the uniqueness condition (U)s, then, for any linearly independent system
{ui}i∈I in Sker A(U), the system {j∞(ui)}i∈I is linearly independent over the ring
E(U).

Proof. If a solution u ∈ Sker A(U) satisfies c(x)j∞(u)(x, z) = 0 for all x ∈ U with a
smooth function c 6= 0 in U , then u vanishes on a nonempty open subset of U . By
the unique continuation property we readily conclude that u = 0 on all of U . Hence,
the jet j∞(u) of any non-zero solution u ∈ Sker A(U) is always linearly independent
over E(U).

Let now {ui}i∈I be a linearly independent system in the space Sker A(U). It
follows that ui 6≡ 0 in U for all i ∈ I. By the above, each subsystem of {j∞(ui)}i∈I
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consisting of one element is linearly independent over E(U). We next argue by
induction.

Assume that all subsystems of {j∞(ui)}i∈I containing at most N elements are
linearly independent over E(U). Pick a system {j∞(ui1), . . . , j

∞(uiN+1)} with
i1, . . . , iN+1 ∈ I. Let

N+1∑
ν=1

cν(x) j∞(uiν
)(x, z) = 0

for all x ∈ U , where cν are smooth functions in U which are not all identically zero
in U . Without loss of generality we can assume that cN+1(x) ≡ −1 on a nonempty
open set U1 ⊂ U , i.e.,

∂αuiN+1(x) =
N∑

ν=1

cν(x) ∂αuiν
(x) (12.1)

for all α ∈ Nn
0 and x ∈ U1.

If all the coefficients c1(x), . . . , cN (x) are constant on a nonempty open subset
U2 of U1, then

u(x) =
N+1∑
ν=1

cν uiν (x)

is an element of Sker A(U) which vanishes for all x ∈ U2. By the unique continu-
ation property, we conclude that u ≡ 0 in U . Since the system {ui}i∈I is linearly
independent in Sker A(U), we see that cν = 0 for all ν = 1, . . . , N + 1. This leads to
−1 = 0, a contradiction.

Assume that there is no nonempty open set U2 ⊂ U1 with the property that
all the coefficients c1(x), . . . , cN (x) are constant on U2. Then (12.1) immediately
implies that

∂α+ej uiN+1(x) =
N∑

ν=1

(
∂jcν(x) ∂αuiν (x) + cν(x) ∂α+ej uiν (x)

)
whenever α ∈ Nn

0 , j = 1, . . . , n and x ∈ U1. Once again applying (12.1) we deduce
that

N∑
ν=1

∂jcν(x) j∞(uiν
)(x, z) = 0

for all j = 1, . . . , n and x ∈ U1. On choosing an arbitrary function c ∈ E(U) with
compact support in U we get

N∑
ν=1

c(x) ∂jcν(x) j∞(uiν )(x, z) = 0

on all of U . The inductive assumption yields c ∂jcν ≡ 0 in U for all 1 ≤ j ≤ n
and 1 ≤ ν ≤ N . In particular, ∂jcν ≡ 0 on the support of c for all 1 ≤ j ≤ n and
1 ≤ ν ≤ N . This contradicts our assumption that the functions c1(x), . . . , cN (x) are
not all constant on any nonempty open set U2 ⊂ U1. We see that this is impossible,
which completes the proof. �

If a sufficiently regular differential operator A satisfies the uniqueness condition
for the Cauchy problem in the small on U and the rank of R∞ is finite over U ,
then Lemma 12.1 implies that the dimension of Sker A(U) is finite, too, and it does
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not exceed the rank of R∞. Therefore, if the dimension of the space Sker A(U) is
equal to the rank of R∞ then E(U,R∞) is generated by j∞(Sker A(U)) over the
ring E(U).

Theorem 12.2. Suppose A is a sufficiently regular differential operator of type
E → F on X satisfying the uniqueness condition for the Cauchy problem in the
small. Let U be a star-shaped domain in X , such that E(U,R∞) is generated by
j∞(Sker A(U)) over the ring E(U) Then for each f ∈ E(U,F ) satisfying Bf = 0 in
U there is u ∈ E(U,E) with Au = f .

Another way of stating this theorem is to say that a C∞ Poincaré lemma holds
for overdetermined systems “reducible” to Frobenius systems.

Proof. By the axiom of choice, we can choose a Hamel basis {ui}i∈I in Sker A(U).
Of course, if the dimension of Sker A(U) is finite, we need not use any axiom of
choice. Fix such a basis.

By Lemma 12.1, the system {j∞(ui)}i∈I is a basis in E(U,R∞) over the ring
E(U). Hence, for each f ∈ Ωq(U,R∞) there are unique indices i1, . . . , iN ∈ I, the
number N depending on f , and differential forms c1, . . . , cN ∈ Ωq(U), such that

f(x, z) =
N∑

ν=1

cν(x) j∞(uiν
)(x, z).

Once again using Lemma 12.1 we deduce that

dqf(x, z) =
N∑

ν=1

(dcν)(x) j∞(uiν
)(x, z),

and dqf = 0 if and only if dcν ≡ 0 in U for all ν = 1, . . . , N .
As in Section 11 we can now define a “regularisation” of the Buttin homotopy

operator by h̃0f = 0 and

h̃qf =
N∑

ν=1

(hqcν) j∞(uiν ),

if q > 0. By construction, h̃q maps Ωq(U,R∞) to Ωq−1(U,R∞). From the equality
d(c j∞f) = dc j∞f we see that

h̃q+1dqf + dq−1h̃qf = f

for q ≥ 1. It follows that the limit complex of Spencer is exact over U . Finally,
Theorem 9.4 yields that the complex

E(U,E) A→ E(U,F ) B→ . . .

is exact, as desired. �

Of course, we can do the same at the level of sheaves. The overdetermined
systems “reducible” to Frobenius systems need not formally have null-space of
finite dimension over U . However, we know no example where the dimension is
infinite.

It is worth pointing out that even for the Cauchy-Riemann operator A = ∂̄ in
Cn, n > 1, the space E(U,R∞) can not be generated by j∞(Sker A(U)) over the
ring E(U), if U is not pseudoconvex. This follows from the well-known fact that
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if the Dolbeault complex is exact at every positive step over an open set U ⊂ Cn

then U is pseudoconvex.
As is observed in [But67, p. 237], it is sufficient to “regularise” the homotopy

operator only on the module generated by j∞(Sker A(U)), at least if U is pseudo-
convex.

The following conjecture is very probable but we have not been able to establish
it.

Theorem 12.3. Let A be sufficiently regular and possess the unique continuation
property.. Then the compatibility complex for A is exact at step q ≥ 1 if and
only if there exists s ≥ s0 (s0 being the number from Quillen’s Theorem 5.6),
such that every f ∈ Ωq+1(U,Rs) satisfying dsf = 0 in U possesses a prolongation
f̃ ∈ Ωq+1(U,R∞) which fulfills df̃ = 0 in U and belongs to the linear span of
j∞(Sker A(U)) over Ωq+1(U).
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