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Abstract

Let D be a bounded domain in Rn, n ≥ 2, with a smooth boundary ∂D. We indicate

appropriate Sobolev spaces of negative smoothness to study the non-homogeneous Cauchy

problem for an elliptic differential complex {Ai} of first order operators. In particular,

we describe traces on ∂D of tangential part τi(u) and normal part νi(u) of a (vector)-

function u from the corresponding Sobolev space and give an adequate formulation of

the problem. If the Laplacians of the complex satisfy the uniqueness condition in the

small then we obtain necessary and sufficient solvability conditions of the problem and

produce formulae for its exact and approximate solutions. For the Cauchy problem in the

Lebesgue space L2(D) we construct the approximate and exact solutions to the Cauchy

problem with the maximal possible regularity. Moreover, using Hilbert space methods, we

construct Carleman’s formulae for a (vector-) function u from the Sobolev space H1(D)

by its Cauchy data τi(u) on a subset Γ ⊂ ∂D and the values of Aiu in D modulo the

null-space of the Cauchy problem. Some instructive examples for elliptic complexes of

operators with constant coefficients are considered.

Key words: Elliptic differential complexes, ill-posed Cauchy problem, Carleman’s formula.

It is well known that the Cauchy problem for an elliptic system A is ill-posed (see, for

instance, [1]). Apparently, the serious investigation of the problem was stimulated by practical

needs. Namely, it naturally appears in applications: in hydrodynamics (as the Cauchy problem

for holomorphic functions), in geophysics (as the Cauchy problem for the Laplace operator), in

elasticity theory (as the Cauchy problem for the Lamé system) etc., see, for instance, the book

[2] and its bibliography. The problem was actively studied through the XX century (see, for

instance, [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] and many others).

Differential complexes appear as compatibility conditions for overdetermined operators (see,

for instance, [14], [15]). Thus, the Cauchy problem for them is of the special interest. One of the

first problems of this kind was the Cauchy problem for the Dolbeault complex (the compatibility

complex for the multidimensional Cauchy-Riemann system), see [16]. The interest to it was

great because of the famous example by H. Lewy of the differential equation without solutions,

constructed with the use of the tangential Cauchy-Riemann operator, see [17]. Recently new

approaches to the problem were found in spaces of smooth functions (see [18], [19]) and in

spaces of distributions (see [20], [21]).

We consider the Cauchy problem in spaces of distributions with some restrictions on growth

in order to correctly define its traces on boundaries of domains (see, for instance, [2], [22], [23],

[24], [25],). In this paper we develop the approach presented in [9] to study the homogeneous

Cauchy problem for overdetermined elliptic partial differential operators. Instead we consider

the non-homogeneous Cauchy problem for elliptic complexes.

1The investigations were supported by DAAD and by RFBR grant 11-01-00852a.
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1 Preliminaries

1.1 Differential complexes

Let X be a C∞-manifold of dimension n ≥ 2 with a smooth boundary ∂X. We tacitly assume

that it is enclosed into a smooth closed manifold X̃ of the same dimension.

For any smooth C-vector bundles E and F over X, we write Diffm(X;E → F ) for the space

of all the linear partial differential operators of order ≤ m between sections of E and F . Then,

for an open set O ⊂
◦

X (here
◦

X is the interior of X) over which the bundles and the manifold are

trivial, the sections over O may be interpreted as (vector-) functions and A ∈ Diffm(X;E → F )

is given as (l × k)-matrix of scalar differential operators, i.e. we have

A =
∑
|α|≤m

aα(x)
∂|α|

∂xα
, x ∈ O,

where aα(x) are (l × k)-matrices of C∞(O)-functions, k = rank(E), l = rank(F ).

Denote E∗ the conjugate bundle of E. Any Hermitian metric (., .)x on E gives rise to a

sesquilinear bundle isomorphism (the Hodge operator) ?E : E → E∗ by the equality 〈?Ev, u〉x =

(u, v)x for all sections u and v of E; here 〈., .〉x is the natural pairing in the fibers of E∗ and E.

Pick a volume form dx on X, thus identifying the dual and the conjugate bundles. For

A ∈ Diffm(X;E → F ), denote by A∗ ∈ Diffm(X;F → E) the formal adjoint operator.

Let π : T ∗X → X be the (real) cotangent bundle of X and let π∗E be a induced bundle for

the bundle E (i.e. the fiber of π∗E over the point (x, z) ∈ T ∗X coincides with Ex). We write

σ(A) : π∗E → π∗F for the principal homogeneous symbol of the order m of the operator A.

Let D be a bounded domain (i.e. open connected set) in
◦

X with infinitely differentiable

boundary ∂D. Denote C∞(D,E) the Fréchet space of all the infinitely differentiable sections of

the bundle E over D and denote C∞(D,E) the subset in C∞(D,E) which consists of sections

with all the derivatives continuously extending up to D. Let also C∞comp(D,E) stand for the set

of all the smooth sections with compact supports in D. Besides, for an open (in the topology of

∂D) subset Γ ⊂ ∂D, let C∞comp(D ∪ Γ, E) be the set of all the C∞(D,E)-sections with compact

supports in D ∪ Γ.

For a distribution-section u ∈ (C∞comp(D,E))′ we always understand Au in the sense of

distributions in D. The spaces of all the weak solutions of the operator A in D we denote

SA(D).

We often refer to the so-called uniqueness condition in the small on
◦

X for an operator A.

Condition 1.1. If u is a distribution in a domain D b
◦

X with Au = 0 in D and u = 0 on an

open subset O of D then u ≡ 0 in D.

It holds true if, for instance, all the objects under consideration are real analytic.

Let GA(., .) ∈ Diffm−1(X; (F ∗, E)→ Λn−1) denote a Green operator attached to A, i.e. such

a bi-differential operator that

dGA(?Fg, v) = ((Av, g)x − (v, A∗g)x) dx for all g ∈ C∞(X,F ), v ∈ C∞(X,E);
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here Λp is the bundle of the exterior differential forms of the degree 0 ≤ p ≤ n over X. The

Green operator always exists (see [15, Proposition 2.4.4]) and for the first order operator A it

may be locally written in the following form:

GA(?g, v) = g∗(x) σ(A)(x, (?dx1, . . . , ?dxn)) v(x) for all g ∈ C∞(X,F ), v ∈ C∞(X,E).

Then it follows from Stokes formula that the (first) Green formula holds true:∫
∂D

GA(?g, v) =

∫
D

((Av, g)x − (v, A∗g)x) dx for all g ∈ C∞(X,F ), v ∈ C∞(X,E). (1)

Fix a defining function of the domain D, i.e. a real valued C∞-smooth function ρ with

|∇ρ| 6= 0 on ∂D and such that D = {x ∈ X : ρ(x) < 0}. Without loss of a generality we can

always choose the function ρ in such a way that |∇ρ| = 1 on a neighborhood of ∂D. Then

GA(?g, v) =

∫
∂D

(σ(A)(x,∇ρ) v, g)x ds(x) for all g ∈ C∞(X,F ), v ∈ C∞(X,E), (2)

where ds is the volume form on ∂D induced from X.

Our principal object to study will be a complex {Ai, Ei}Ni=0 of partial differential operators

over X (see, [15], [14]),

0→ C∞(X,E0)
A0→ C∞(X,E1)

A1→ C∞(X,E2)→ · · · AN−1→ C∞(X,EN)→ 0, (3)

where Ei are the bundles over X and Ai ∈ Diff1(X;Ei → Ei+1) with Ai+1 ◦ Ai ≡ 0; we tacitly

assume that Ai = 0 for both i < 0 and i ≥ N . Obviously, σ(Ai+1) ◦ σ(Ai) ≡ 0. We say that

the complex {Ai, Ei}Ni=0 is elliptic if the corresponding symbolic complex,

0→ π∗E0
σ(A0)→ π∗E1

σ(A1)→ π∗E2 → · · ·
σ(AN−1)→ π∗EN → 0, (4)

is exact for all (x, z) ∈ T ∗X \ {0}, i.e. the the range of the map σ(Ai) coincides with the kernel

of the map σ(Ai+1). In particular, σ(A0) is injective away from the zero section of T ∗X and

σ(AN−1) is surjective.

As any differential complex is homotopically equivalent to a first order complex, we will

consider elliptic complexes of first order operators only. Hence it follows that the Laplacians

∆i = A∗iAi +Ai−1A
∗
i−1 of the complex are elliptic differential operators of the second order and

types Ei → Ei on X for 0 ≤ i ≤ N .

1.2 Sobolev spaces

We write L2(D,E) for the Hilbert space of all the measurable sections of E over D with a

scalar product (u, v)L2(D,E) =
∫
D

(u, v)xdx. We also denote Hs(D,E) the Sobolev space of the

distribution sections of E over D, whose weak derivatives up to the order s ∈ N belong to

L2(D,E). As usual, let Hs
loc(D ∪ Γ, E) be the set of sections in D belonging to Hs(σ,E) for

every measurable set σ in D with σ ⊂ D ∪ Γ.

Further, for non-integer positive s we define the Sobolev spaces Hs(D,E) with the use of

the proper interpolation procedure (see, for example, [2, §1.4.11]). In the local situation we can
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use other (equivalent) approaches. For instance, if X ⊂ Rn and the bundle E is trivial, we may

we denote H1/2(D,E) the closure of C∞(D,E) functions with respect to the norm (see [26]):

‖u‖H1/2(D,E) =

√
‖u‖2

L2(D,E) +

∫
D

∫
D

|u(x)− u(y)|2dx dy
|x− y|2n+1

.

Then, for s ∈ N, let Hs−1/2(D,E) be the space of functions from Hs−1(D,E) such that the

weak derivatives of the order (s− 1) belong to H1/2(D,E).

The Sobolev spaces of negative smoothness are usually defined with the use of a proper

duality (see [27]). For instance, one can consider the Sobolev space H̃−s(D,E) as the completion

of the space C∞comp(D,E) with respect to the norm sup
v∈C∞comp(D,E)

|(u,v)L2(D,E)|
‖v‖Hs(D,E)

, s ∈ N. Unfortunately,

elements of these spaces may have ”bad” behavior near ∂D, but the study of the Cauchy

problem needs a correctly defined notion of a trace. This is the reason we use slightly different

spaces; we follow [22] (cf. [24], [2, Chapters 1, 9], [28]). More exactly, denote by C∞m−1(D,E)

the subspace in C∞(D,E) consisting of the sections with vanishing on ∂D derivatives up to

order m− 1. Let s ∈ N. For sections u ∈ C∞(D,E) we define two types of negative norms

‖u‖−s = sup
v∈C∞(D,E)

|(u, v)L2(D,E)|
‖v‖Hs(D,E)

, |u|−s = sup
v∈C∞m−1(D,E)

|(u, v)L2(D,E)|
‖v‖Hs(D,E)

.

It is more correct to write ‖ · ‖−s,D,E and | · |−s,D,E, but we prefer to omit the indexes D, E, if

it does not cause misunderstandings. It is convenient to set ‖ · ‖0,D = ‖ · ‖L2(D,E).

Denote the completions of space C∞(D,E) with respect to these norms by H−s(D,E) and

H(D,E, | · |−s) respectively. It follows from the definition that the elements of these Banach

spaces are distributions of finite orders on D and these spaces could be called the Sobolev

spaces of negative smoothness. Clearly, they satisfy the following relations: H−s(D,E) ↪→
H(D,E, | · |−s) ↪→ H̃−s(D,E), and, similarly, H−s(D,E) ↪→ H−s−1(D,E), H(D,E, | · |−s) ↪→
H(D,E, | · |−s−1).

The Banach space H−s(D,E) can be identifyed with the dual space (Hs(D,E))′ of the

standard Hilbert space Hs(D,E) (see, for instance, [2, Theorem 1.4.28]).

Clearly, any element u ∈ H−s(D,E) extends up to an element U ∈ H−s(
◦

X,E) via

〈U, v〉 ◦
X

= 〈u, v〉D for all v ∈ Hs(
◦

X,E);

here 〈·, ·〉D is a pairing H×H ′ for a space H of distributions over D. It is natural to denote this

extension χDu because its support belongs to D. Obviously, this extension induces a bounded

linear operator

χD : H−s(D,E)→ H−s(
◦

X,E), s ∈ Z+. (5)

It is known that the differential operator A continuously maps Hs(D,E) to Hs−m(D,F ),

m ≤ s, s ∈ N. The following lemma shows the specific way of the action of A for s ≤ 0.

Lemma 1.1. A differential operator A induces linear bounded operator A : H−s(D,E) →
H(D,F, | · |−s−m), s ∈ Z+.
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Proof. Immediately follows from (1) and (2). �
However there is no need for elements of H−s(D,E) to have a trace on ∂D and there is no

need for A to map H−s(D,E) to H−s−m(D,F ).

2 Traces of Sobolev functions of negative smoothness

By the discussion above we need to introduce some other spaces in order to define the traces

on ∂D. In general, our approach is closed to the one described in [2, §9.2, 9.3].

2.1 Strong traces on the boundary

It is well known that if ∂D is sufficiently smooth then the functions from the Sobolev space

Hs(D), s ∈ N, have traces on the boundary in the Sobolev space Hs−1/2(∂D) and the cor-

responding trace operator ts : Hs(D) → Hs−1/2(∂D) is bounded and it admits the bounded

right inverse operator (see, for instance, [26]). In particular, this means that for every u ∈
Hs
loc(D ∪ Γ, E), s ∈ N, there is the trace tΓ,E(u) on Γ belonging to H

s−1/2
loc (Γ, E).

In order to define the so-called strong traces on ∂D for elements of Sobolev spaces with

negative smoothness we denote H−st (D,E) the completion of C∞(D,E) with respect to the

graph-norm:

‖u‖−s,t =
(
‖u‖2

−s + ‖u‖2
−s−1/2,∂D

)1/2
.

Thus the operator ts induces the bounded linear trace operator

t−s,E : H−st (D,E)→ H−s−1/2(∂D,E).

Remark 2.1. The spaces H−s(D,E), H−st (D,E), H(D,E, | · |−s) are well known. Let A be

a first order operator with injective principal symbol. Given distributions w and u0, consider

the Dirichlet problem for strongly elliptic formally self-adjoint second order operator A∗A. It

consists in finding a distribution u satisfying{
A∗Au = w in D,

t(u) = u0 on ∂D.
(6)

It follows from [22, theorems 2.1 and 2.2] (see also [24], [28] for systems of equations) that the

Uniqueness Theorem and the Existence Theorem are valid for problem (6) on the Sobolev scale

Hs(D,E), s ∈ Z for data w ∈ H(D,E, | · |s−2) and u0 ∈ Hs−1/2(∂D,E). Denote by P(D) the

operator mapping u0 and w = 0 to the unique solution to the Dirichlet problem (6). Similarly,

denote G(D) the operator mapping w to the unique solution to the Dirichlet problem (6) with

zero boundary Dirichlet data. Clearly, G(D)
A∗A is the famous Green function of the Dirichlet

problem (6) and P(D)
A∗A is the Poisson integral corresponding to the problem. The standard

theorem of improving the smoothness of the Dirichlet problem (see, for instance, [26] or [2,

Theorem 9.3.17]) and [28, Theorem 2.26 and Corollary 2.31] imply that the operators P(D)
A∗A,

G(D)
A∗A act continuously on the following Sobolev scale:

P(D,s)
A∗A : Hs−1/2(∂D,E)→ Hs(D,E), G(D,s)

s,A∗A : H(D,E, | · |s−2)→ Hs(D,E), s ∈ N,
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P(D,−s)
A∗A : H−s−1/2(∂D,E)→ H−st (D,E), G(D,−s)

A∗A : H(D,E, | · |−s−2)→ H−st (D,E), s ∈ Z+.

They completely describe the solutions of the Dirichlet problem on the scale of the Sobolev

spaces. �

However we need a more subtle characteristic of the traces to study the Cauchy problem

for the differential complex {Ai}.
For a section u of E over D and a first order operator A, let τ̃A(u) = σ(A)(x,∇ρ(x))u

represent the Cauchy data of u with respect to A (see, for instance, [15, §3.2.2]). Similarly, let

ν̃A(f) = τ̃A∗(f) represent the Cauchy data of f with respect to A∗ for a section f of F . Then

the maps τ̃ , ν̃ induces a bounded linear operators

τ̃A,s : Hs(D,E)→ Hs−1/2(∂D, F ), ν̃A,s : Hs(D,F )→ Hs−1/2(∂D,E), s ∈ N. (7)

Denote the completions of the space C∞(D,E) with respect to graph-norms

‖u‖−s,A =
(
‖u‖2

−s + ‖Au‖2
−s−1

)1/2
, ‖u‖−s,τ̃A =

(
‖u‖2

−s + ‖τ̃A(u)‖2
−s−1/2,∂D

)1/2

by H−sA (D,E) and H−sτ̃A (D,E) respectively. Clearly, the elements of these spaces are more

regular in D than the elements of H−s(D,E). Moreover, by the very definition, the differential

operator A induces a bounded linear operator

A−s : H−sA (D,E)→ H−s−1(D,F ),

and the trace operator (7) induces a bounded linear operator

τ̃A,s : H−sτ̃A (D,E)→ H−s−1/2(∂D, F ).

Theorem 2.1. The linear spaces H−sA (D,E) and H−sτ̃A (D,E) coincide and their norms are

equivalent. Moreover, if A has the injective principal symbol then the spaces H−sτ̃A (D,E) and

H−st (D,E) coincide and their norms are equivalent.

Proof. It follows from the definition of the spaces that we need to check the relations

between the norms on the sections from C∞(D,E) only. By Green’s formula (1) and (2) we

have for all u ∈ C∞(D,E):

‖u‖2
−s,A ≤ (1 + ‖A∗s+1‖2 + ‖ts+1,F‖2)(‖u‖2

−s + ‖τ̃A(u)‖2
−s−1/2,∂D),

where A∗s+1 : Hs+1(D,F )→ Hs(D,F ) is the linear bounded operator induced by the differential

operator A∗.

Back, fix a section g0 ∈ C∞(∂D, F ). Now let ∇F ∈ Diff1(X;F → F ⊗ (T ∗X)c) be a

connections in the bundle F compatible with the corresponding Hermitian metric (see [29, Ch.

III, Proposition 1.11]). Obviously ∇F has the injective symbol. Then, using remark 2.1 we see

that there is a section g ∈ C∞(D,F ) with g = g0 on ∂D and ‖g‖s+1 ≤ γ‖g0‖s+1/2. For instance

we may take g = P(D)
∇∗F∇F

g0. Therefore Green’s formula (1) and formula (2) imply that for all

u ∈ C∞(D,E) we have:∫
∂D

(τ̃A(u), g0)xds(x) =

∫
D

((Au, g)x − (u,A∗g)x)dx.
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Hence

‖u‖2
−s + ‖τ̃A(u)‖2

−s−1/2,∂D ≤ (1 + γ2‖A∗s+1‖2 + γ2)(‖u‖2
−s + ‖Au‖2

−s−1),

i.e. the spaces H−sA (D,E) and H−sτ̃A (D,E) coincide and their norms are equivalent.

Finally, if the symbol σ(A) is injective then the map σ∗(A)(x,∇ρ(x))σ(A)(x,∇ρ(x)) is

invertible on ∂D and

τ̃A(u) = σ(A)(x,∇ρ(x))t(u), t(u) = (σ∗(A)(x,∇ρ(x))σ(A)(x,∇ρ(x)))−1ν̃A(τ̃A(u)),

which means that the norms ‖ · ‖−s,t and ‖ · ‖−s,τ̃A are equivalent on C∞(D,E). �
Now for the complex {Ai} denote τ̃i the Cauchy data with respect to Ai. Similarly de-

note ν̃i the Cauchy data with respect to A∗i−1. As the complex is elliptic then the matrix

L(x) = σ∗(Ai)(x,∇ρ(x))σ(Ai)(x,∇ρ(x)) + σ(Ai−1)(x,∇ρ(x))σ∗(Ai−1)(x,∇ρ(x)) is invertible

in a neighborhood of ∂D. Then we set

τi = L−1(x)ν̃i+1 ◦ τ̃i, νi = L−1(x)τ̃i−1 ◦ ν̃i.

Lemma 2.1. The following identities hold true:

τ̃i+1 ◦ τ̃i = 0, ν̃i−1 ◦ ν̃i = 0, τ̃i ◦ νi = 0, ν̃i ◦ τi = 0, τ̃i = τ̃i ◦ τi, ν̃i = ν̃i ◦ νi,

τi ◦ τi = τi, νi ◦ νi = νi, τi ◦ νi = 0, νi ◦ τi = 0, τi + νi = 1,

τ ∗i = τi, ν
∗
i = νi, τ̃

∗
i = ν̃i+1, ν̃

∗
i = τ̃i−1.

Proof. See, for instance, [15, formulae (3.2.3)]. �
Because of Lemma 2.1, the projections τi(u) and νi(u) are often called the tangential and

the normal parts of a section u with respect to the complex {Ai} respectively.

Due to Lemma 2.1 we have for all u ∈ C∞(D,Ei), g ∈ C∞(D,Ei+1):∫
∂D

(τi(u), ν̃i+1(g))x ds(x) =

∫
D

((Aiu, g)x − (u,A∗i g)x)dx. (8)

Denote the completion of the space C∞(D,Ei) (0 ≤ i ≤ N) with respect to graph-norms

‖u‖−s,τi =
(
‖u‖2

−s + ‖τi(u)‖2
−s−1/2,∂D

)1/2
, ‖u‖−s,νi =

(
‖u‖2

−s + ‖νi(u)‖2
−s−1/2,∂D

)1/2

by H−sτi (D,Ei) and H−sνi (D,Ei) respectively.

Corollary 2.1. Let the differential complex {Ai} be elliptic. Then the linear spaces H−sAi (D,Ei),

H−sτ̃i (D,Ei) and H−sτi (D,Ei) coincide and their norms are equivalent.

Proof. The equivalence of the norms ‖ · ‖−s,Ai and ‖ · ‖−s,τ̃i follows Theorem 2.1. Finally,

as the complex {Ai} is elliptic then Lemma 2.1 implies the equivalence of the norms ‖ · ‖−s,τ̃i
and ‖ · ‖−s,τi . �

Corollary 2.2. Let the complex {Ai} be elliptic. Then linear spaces H−sA∗i−1
(D,Ei), H−sν̃i (D,Ei)

and H−sνi (D,Ei) coincide and their norms are equivalent.
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Proof. As the complex {Ai} is elliptic then the complex {A∗i } is elliptic too. That is why

Corollary 2.1 implies the desired statement. �

Corollary 2.3. If the complex {Ai} is elliptic then the linear spaces H−sAi⊕A∗i−1
(D,Ei) and

H−st (D,Ei) coincide and their norms are equivalent.

Proof. As the complex {Ai} is elliptic then the operator Ai⊕A∗i−1 has the injective principal

symbol. Hence the statement follows from Theorem 2.1. �

Corollary 2.4. If the complex {Ai} is elliptic then the following identities hold true:

H−sAi⊕A∗i−1
(D,Ei) = H−sAi (D,Ei) ∩H−sA∗i−1

(D,Ei),

H−st (D,Ei) = H−sτi (D,Ei) ∩H−sνi (D,Ei).

2.2 Weak boundary values of the tangential and normal parts

Consider now the weak extension of an operator A on the scale H−s(D,E). Namely, denote

Hs
A,w(D,E) the set of the sections u from H−s(D,E) such that there is a section f ∈ H−s(D,F )

satisfying Au = f in H−s(D,F, | · |−s−1) (in particular, in the sense of distributions in D). As

the operator A is linear, this set is linear too. Clearly,

H−sA (D,E) ⊂ H−sA,w(D,E). (9)

It is natural to expect that these spaces coincide (cf. [30]); we will prove it later.

According to Corollary 2.1, we have τi(u) ∈ H−s−1/2(∂D,Ei) for all sections u ∈ H−sA (D,Ei).

Let us clarify the situation with the traces of the elements from H−sAi,w(D,Ei) for an operator

Ai from an elliptic complex.

To this end, define pairing (u, v) for u ∈ H−s(D,E), v ∈ C∞(D,E) as follows. By the

definition, one can find such a sequence {uν} in C∞(D,E) that ‖uν − u‖−s → 0 if ν → ∞.

Then

|(uν − uµ, v)L2(D,E)| ≤ ‖uν − uµ‖−s‖v‖Hs(D,E) → 0 as µ, ν →∞.

Set (u, v) = lim
ν→∞

(uν , v)L2(D,E). It is clear that the limit does not depend on the choice of the

sequence {uν}, for if ‖uν‖−s → 0, ν →∞, then |(uν , v)L2(D,E)| ≤ ‖uν‖−s‖v‖Hs(D,E) tends to zero

too. This implies that for u ∈ H−s(D,E) and v ∈ C∞(D,E) we have the inequality: |(u, v)| ≤
‖u‖−s‖v‖Hs(D,E). Set H(D,E) = ∪∞s=0H

−s(D,E). Easily, the pairing (u, v)D is correctly defined

for u ∈ H(D,E) and v ∈ C∞(D,E). The unions ∪∞s=1H
−s(D,E) and ∪∞s=1H

−s
A,w(D,E) we

denote by H(D,E) and HA(D,E) respectively.

As before, let Γ be an open (in the topology of ∂D) connected subset of ∂D. The following

definition is induced by (8).

Definition 2.1. Let alone the correctness of this definition, we say that a distribution-section

u ∈ HAi(D,Ei), satisfying Aiu = f in D with f ∈ H(D,Ei+1), has a weak boundary value

τwi,Γ(u) = τi(u0) on Γ for u0 ∈ D′(Γ, Ei) if

(f, g)D − (u,A∗i g)D = 〈?ν̃i+1(g), τi(u0)〉Γ for all g ∈ C∞comp(D ∪ Γ, Ei+1).
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Formulae (1), (2) and Theorem 2.1 imply that any section u ∈ H−sAi (D,Ei) has a weak

boundary value of the tangential part τwi,∂D(u) on ∂D coinciding with the trace τi,−s(u) ∈
H−s−1/2(∂D,Ei). We are to connect the weak boundary values of the tangential parts with the

so-called limit boundary values of the solutions of finite orders of growth near ∂D to elliptic

systems (see [23], [24], [2]). Recall that a solution u ∈ SA(D) of an elliptic system A has a

finite order of growth near ∂D if for any point x0 ∈ ∂D there are a ball B(x0, R) and constants

c > 0, γ > 0 such that

|v(x)| ≤ c dist(x, ∂D)−γ for all x ∈ B(x0, R) ∩D.

As ∂D is compact, the constants c and γ may be chosen in such a way that this estimate is

valid for all x0 ∈ ∂D. The space of all the solutions to A of finite order of growth near ∂D will

be denoted SFA (D).

Further, set Dε = {x ∈ D : ρ(x) < −ε}. Then, for sufficiently small ε > 0, the sets Dε b
D b D−ε are domains with smooth boundaries ∂D±ε of class C∞. Besides, the vectors ∓εν(x)

belong to ∂D±ε for every x ∈ ∂D (here ν(x) is the external normal unit vector to the hyper-

surface ∂D at the point x). According to [2, Theorem 9.4.7], [24], if A is elliptic and it

satisfies the Uniqueness Condition 1.1 then any solution w ∈ SFA∗A(D) had the weak limit value

w0 ∈ (C∞comp(Γ, E))′ on Γ, i.e.

< w0, v >= lim
ε→+0

∫
∂D

v(y)w(y − εν(y))ds(y) for all v ∈ C∞comp(Γ, E).

Theorem 2.2. Let Ai be an elliptic complex such that the operators Ai ⊕ A∗i−1, 0 ≤ i ≤
N , satisfy the Uniqueness Condition 1.1. Then every section u ∈ H−sAi,w(D,Ei) has the weak

boundary value τwi,∂D(u) ∈ H−s−1/2(∂D,Ei) in the sense of Definition 2.1, coinciding with the

limit boundary value τi(w) of the solution w = (u − G(D,−s)
∆i

A∗i f − Ai−1G(D,−s+1)
∆i−1

A∗i−1u) from

SF∆i
(D); besides, τwi,∂D(u) does not depend on the choice of f ∈ H−s−1(D,Ei+1) with Aiu = f

in D.

Proof. First of all we note that Lemma 1.1, Theorem 2.1 and Remark 2.1, imply that

the operator G(D,p)
∆i

A∗i continuously maps Hp−1(D,Ei+1) to Hp
Ai

(D,Ei). Hence the sections

w1 = G(D,−s)
∆i

A∗i f ∈ H−sAi (D,Ei) and w2 = G(D,−s+1)
∆i−1

A∗i−1u ∈ H−s+1
Ai−1

(D,Ei−1) have the zero

traces t−s(w1) and t−s+1(w2) on ∂D. In particular, τi,−s(w1) = 0, τi−1,−s+1(w2) = 0, and

therefore τwi,∂D(w1) = 0, τwi−1,∂D(w2) = 0. Besides, as Ai ◦Ai−1 ≡ 0, we see that Ai(Ai−1w2) = 0

in D and Ai−1w2 ∈ H−sAi,w(D,Ei). According to Definition 2.1, applied to w2, we have:

(0, ψ)D − (Ai−1w2, A
∗
i v)D = −〈?ν̃i(A∗i v), τi−1(w2)〉Γ + (w2, A

∗
i−1A

∗
i v)D = 0

for all v ∈ C∞comp(D ∪ Γ, Ei+1). Therefore τwi,∂D(Ai−1w2) = 0 too.

It is clear now that the section u ∈ H−sAi,w(D,Ei) has the weak boundary value of τwi,∂D(u) in

the sense of Definition 2.1 if and only if the section w = (u−G(D,−s)
∆i

A∗i f −Ai−1G(D,−s+1)
∆i−1

A∗i−1u)

has. By the construction w ∈ H−sAi,w(D,Ei) satisfies

∆iw = (A∗iAi + Ai−1A
∗
i−1)u− A∗i f − Ai−1(A∗i−1u) = 0 in D.
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In particular, this section belongs to C∞(D,Ei), it has a finite order of growth near ∂D (see [28,

Theorem 2.32]), and hence it has the limit boundary value w0 ∈ (C∞comp(∂D,Ei))
′ on ∂D (see

[2, Theorem 9.4.8]). Of course, the section τi(w
0) ∈ (C∞comp(∂D,Ei))

′ is also defined because

the function ρ is of class C∞. Clearly, τi(w) = τi(w
0) in the sense of the limit boundary values

on ∂D.

As we have already noted, w ∈ H−sAi,w(D,Ei) and Aiw = f − AiG(D,−s)
∆i

A∗i f in D where

(f − AiG(D,−s)
∆i

A∗i f) ∈ H−s−1(D,Ei+1). In particular, this means that

〈χDw, v〉 = (w, v)D for all v ∈ C∞(
◦

X,Ei),

〈χD(f − AiG(D,−s)
∆i

A∗i f), g〉 = (f − AiG(D,−s)
∆i

A∗i f, g)D for all g ∈ C∞(
◦

X,Ei+1).

Since the both w and Aiw are solutions to elliptic operators, i.e. ∆iw = 0 in D, ∆i+1(Aiw) =

0 in D and they both have finite orders of growth near ∂D, then it follows from [2, the proof

of Theorem 9.4.7] that there is a sequence of positive numbers {εν}, tending to zero and such

that

〈χDw, v〉 = lim
εν→+0

∫
Dεν

(w, v)xdx for all v ∈ C∞(
◦

X,Ei),

〈χD(f − AiG(D,−s)
∆i

A∗i f), g〉 = lim
εν→+0

∫
Dεν

(Aiw, g)xdx for all g ∈ C∞(
◦

X,Ei+1).

By Whitney’s Theorem, every smooth section over D may be extended up to a smooth section

over X. Therefore

(w, v)D = lim
εν→+0

∫
Dεν

(w, v)xdx for all v ∈ C∞(D,Ei),

(f − AiG(D,−s)
∆i

A∗i f, g)D = lim
εν→+0

∫
Dεν

(Aiw, g)xdx for all g ∈ C∞(D,Ei+1).

As τi(G(D,−s)
∆i

A∗i f + Ai−1G(D,−s+1)
∆i−1

A∗iu) = 0 on ∂D in the sense of Definition 2.1, we see that

Lemma 2.1, formulae (1) and (8) imply for all g ∈ C∞(D,Ei+1):

(f, g)D − (u,A∗i g)D = (f − AiG(D,−s)
∆i

A∗i f, g)D − (w,A∗i g)D =

lim
εν→+0

(∫
Dεν

((Aiw, g)x − (w,A∗i g)x)dx

)
=

lim
εν→+0

∫
∂Dεν

(τi(w), ν̃i+1(g))x ds(x) = 〈?ν̃i+1(g), τi(w
0)〉∂D,

i.e. τwi,∂D(u) = τi(w) on ∂D. Now, if f̃ ∈ H−s−1(D,Ei−1) satisfies Aiu = f̃ in D then w̃ =

(u−G(D,−s)
∆i

A∗i f̃ −Ai−1G(D,−s+1)
∆i−1

A∗i−1u) and we have: (w− w̃) = G(D,−s)
∆i

A∗i (f − f̃) ∈ H−sAi (D,Ei)

with τwi,∂D(w − w̃) = 0 on ∂D, i.e. the weak boundary value τwi,∂D(u) does not depend on the

choice of the section f ∈ H−s−1(D,Ei+1) satisfying Aiu = f in D.

Finally, we are to prove that the weak boundary value belongs to the corresponding Sobolev

space H−s−1/2(∂D,Ei). With this aim, fix a section v0 ∈ C∞(∂D,Ei+1). Then the section
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g = P(D)
∇∗Ei+1

∇Ei+1
τ̃i(v0) (see the proof of Theorem 2.1) belongs to C∞(D,Ei+1) and coincides

with τ̃i(v0) on ∂D. Moreover, according to Remark 2.1 we have:

‖g‖Hs+1(D,Ei+1) ≤ γ1‖τ̃i(v0)‖Hs+1/2(∂D,Ei+1) ≤ γ2‖v0‖Hs+1/2(∂D,Ei) (10)

with a positive constants γ1, γ2, which does not depend on g and v0. Hence, by Definition 2.1

and Lemma 2.1, we obtain:

|(τwi,∂D(u), v0)∂D| = |〈?ν̃i+1(τ̃i(v0)), τwi,∂D(u)〉∂D| = |〈?ν̃i+1(g), τwi,∂D(u)〉∂D| =

|(f, g)D − (u,A∗i g)D| ≤ ‖f‖−s−1‖g‖Hs+1(D,Ei+1) + ‖u‖−s‖A∗i g‖Hs(D,Ei).

As the map A∗i : Hs+1(D,Ei+1)→ Hs(D,Ei) is bounded, then the estimate implies that (10)

|(τwi,∂D(u), v0)| ≤ γ̃(‖u‖−s + ‖f‖−s−1)‖v0‖Hs+1/2(∂D,Ei+1)

with a positive constant γ̃ which does not depend on v0 and u0.

Hence,

‖τwi,∂D(u)‖H−s−1/2(∂D,Ei) = sup
v∈C∞comp(∂D,Ei)

|(τwi,∂D(u), v)∂D|
‖v‖Hs+1/2(∂D,Ei)

≤ γ̃(‖u‖−s + ‖f‖−s−1).

Thus, the section τwi,∂D(u) belongs to the space H−s−1/2(∂D,Ei), which was to be proved. �

Corollary 2.5. The spaces H−sAi (D,Ei) and H−sAi,w(D,Ei) coincide.

Proof. Since (9), it is enough to prove that H−sAi,w(D,Ei) ⊂ H−sAi (D,Ei). Fix a section

u ∈ H−sAi,w(D,Ei). Proving Theorem 2.2 we have seen that there is w ∈ SF∆i
(D) ∩H−s(D,Ei),

satisfying

u = w + G(D,−s)
∆i

A∗i f + Ai−1G(D,−s+1)
∆i−1

A∗i−1u.

According to Remark 2.1, the section w is presented via its boundary values on ∂D by the

Poisson type integral w = P(D,−s)
∆i

ti(w). Hence w ∈ H−st (D,Ei). Besides, Remark 2.1 imply

that w1 = G(D,−s)
∆i

A∗i f belongs to H−st (D,Ei) too. Thus, it follows from Corollary 2.3 that the

sections w and w1 belong H−sAi⊕A∗i−1
(D,Ei) ⊂ H−sAi (D,Ei).

Take a sequence {uν} ⊂ C∞(D,Ei) approximating u in the space H−s(D,Ei). It follows

from Remark 2.1 and 1.1 that the sequence {Ai−1G(D,−s+1)
∆i−1

A∗i−1uν} ⊂ C∞(D,Ei) converges

to Ai−1G(D,−s+1)
∆i−1

A∗i−1u in the space H−s(D,Ei). Moreover, {Ai(Ai−1G(D,−s+1)
∆i−1

A∗i−1uν) ≡ 0} ⊂
C∞(D,Ei) converges to zero in the space H−s−1(D,Ei+1). Therefore Ai−1G(D,−s+1)

∆i−1
A∗i−1u be-

longs to H−sAi (D,Ei). That is why the section u belongs to this space too. �

Corollary 2.6. The differential operator Ai continuously maps H−sAi (D,Ei) to H−s−1
Ai+1

(D,Ei+1).

Similarly defining the spaces H−sA∗i−1,w
(D,Ei) and H−sAi⊕A∗i−1,w

(D,Ei) we easily obtain the

following statements.

Corollary 2.7. The spaces H−sA∗i−1
(D,Ei) and H−sA∗i−1,w

(D,Ei) coincide.
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Corollary 2.8. The spaces H−sAi⊕A∗i−1
(D,Ei) and H−sAi⊕A∗i−1,w

(D,Ei) coincide.

As we have seen above, the scale {H−sAi (D,Ei)} is suitable for stating the Cauchy problem

for the elliptic first order complex {Ai}. In order to do this we need to choose a proper spaces

for the boundary Cauchy data on a surface Γ ⊂ ∂D. As we are interesting in the case Γ 6= ∂D,

we will use one more type of the Sobolev spaces: the Sobolev spaces on closed sets (see, for

instance, [2, §1.1.3]). Namely, let H−s−1/2(Γ, Ei) stand for the factor space of H−s−1/2(∂D,Ei)

over the subspace of functions vanishing on a neighborhood of Γ. Of course, it is not so easy to

handle this space, but its every element extends from Γ up to an element of H−s−1/2(∂D,Ei).

Further characteristic of this space may be found in [2, Lemma 12.3.2]). We only note that if

Γ has C∞-smooth boundary (on ∂D), then

H−s−1/2(Γ, Ei) ↪→ H−s−1/2(Γ, Ei) ↪→ H̃−s−1/2(Γ, Ei).

Corollary 2.9. For every section u ∈ H−sAi (D,Ei) and every Γ ⊂ ∂D there is the boundary

value τi,Γ(u) in the sense of Definition 2.1, belonging to H−s−1/2(Γ, Ei).

As ∂D is compact, ∪∞s=1H
−s−1/2(∂D,Ei) = D′(∂D,Ei). Set ∪∞s=1H

−s−1/2(Γ, Ei) = D′(Γ, Ei).
Now Corollary 2.5 immediately implies the following statements.

Corollary 2.10. For every u ∈ HAi(D,Ei) and every Γ ⊂ ∂D there is the boundary value

τi,Γ(u) in the sense of Definition 2.1, belonging to D′(Γ, Ei).

3 A homotopy formula

In this section we will obtain an integral formula for elements of the Soblev spaces with non-

negative smoothness. Of course, for sufficiently smooth sections such formulae are well known

(see, for instance, [15, §2.4]).

From now on we additionally assume that the operators ∆i, 0 ≤ i ≤ N , satisfy the Unique-

ness Condition 1.1. Then each of these operators has a bilateral pseudo-differential fundamental

solution, say, Φi, on
◦

X (see, for example, [2, §4.4.2]). Schwartz kernel of the operator Φi is

denoted by Φi(x, y), x 6= y. It is known, that Φi(x, y) ∈ C∞((Ei ⊗ E∗i ) \ {x = y}) (see, for

instance, [15, §5]).

For a section f ∈ C∞(D,Ei+1) we denote by Tif the following volume potential:

Tif(x) = (ΦiA
∗
iχDf)(x) =

∫
D

〈(A∗i )Ty Φi(x, ·), f〉ydy.

If ∂D is smooth enough (e.g. ∂D ∈ C∞) then the potential Ti induces a bounded linear operator

Ti : Hs−1(D,Ei+1)→ Hs(D,Ei), s ∈ N

(see, for example, [31, 1.2.3.5]).

Lemma 3.1. For any domain Ω b
◦

X with ∂Ω ∈ C∞ the potential Ti induces a bounded linear

operator

Ti,Ω : H−s(D,Ei+1)→ H−s+1
Ai

(Ω, Ei), s ∈ N.

Moreover for every section f ∈ H−s(D,Ei+1) it is true that ∆iTi,Ωf = A∗iχDf in Ω \D.
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Proof. First of all we note that any smoothing operator K̃ of type Ei+1 → Ei on
◦

X induces

for any p a bounded linear operator

K̃χD : H−s(D,Ei+1)→ Cp(Ω, Ei).

As any two fundamental solutions differ on a smoothing operator, we may assume that Φi =

G(X)
∆i

. The principal advantage of G(X)
∆i

is in the fact that the volume potential is L2(X,Ei)-self-

adjoint (see, for instance, [28, formula (2.75)]). Besides, it has the transmission property (see

[31, §2.2.2]) and hence it continuously acts on the Sobolev scale:

G(X)
∆i

χD : Hs−1(D,Ei)→ Hs+1(Ω, Ei), G(X)
∆i

A∗iχD : Hs−1(D,Ei+1)→ Hs(Ω, Ei), s ∈ N.

In particular, G(X)
∆i

χΩv belongs to H2
loc(

◦

X,Ei)∩C∞(Ω, Ei) for all v ∈ C∞(Ω, Ei) and, similarly,

G(X)
∆i

A∗iχΩg belongs to H1
loc(

◦

X,Ei) ∩ C∞(Ω, Ei) for all g ∈ C∞(Ω, Ei+1). Then for all f ∈
C∞(D,Ei+1), v ∈ C∞(Ω, Ei), g ∈ C∞(Ω, Ei+) we have:

(Tif, v)Ω = (G(X)
∆i

A∗iχDf, χΩv)X = (χDf, AiG(X)
∆i

χΩv)X ,

(AiTif, g)Ω = (AiG(X)
∆i

A∗iχDf, χΩg)X = (χDf, AiG(X)
∆i

A∗iχΩg)X .

Therefore, we have

‖Tif‖−s,Ai,Ω ≤ C1 ‖f‖−s−1,D for all f ∈ C∞(D,Ei+1), (11)

‖AiTif‖−s−1,Ai,Ω ≤ C2 ‖f‖−s−1,D for all f ∈ C∞(D,Ei+1), (12)

with positive constants C1, C2 do not depending on f .

Let now f ∈ H−s−1(D,Ei+1). Then there is a sequence {fν} ⊂ C∞(D,Ei+1) converging to

f in H−s−1(D,Ei+1). According to (11), (12) the sequence {Tifν} is fundamental in the space

H−sAi (Ω, Ei); its limit we denote Ti,Ωf . It is easy to understand that this limit does not depend

on the choice of the sequence {fν} converging to f , and the estimates (11), (12) guarantee that

the operator Ti,Ω, defined in this way, is bounded. Moreover, the properties of the fundamental

solutions Φi means that each of the potentials Tifν satisfies

(Tifν ,∆iv)Ω = 2〈A∗iχDfν , v〉 = (χDfν , Aiv)Ω for all v ∈ C∞comp(Ω \D,Ei).

Passing to the limit with respect to ν →∞ in the last equality we obtain the desired statement

because the operators χD and Ti,Ω are continuous. �
Further, for a section v ∈ C∞(D,Ei) we denote by Kif the following volume potential:

Kiv = (ΦiAi−1 − Ai−1Φi−1)A∗i−1χDv.

Again, by the definition, it is a zero order pseudo-differential operator with the transmission

property. If ∂D is smooth enough (e.g. ∂D ∈ C∞) then the potential Ki induces a bounded

linear operator

Ki : Hs(D,Ei)→ Hs(D,Ei), s ∈ Z+

(see, for example, [31, 1.2.3.5]).
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Lemma 3.2. For any domain Ω b
◦

X with ∂Ω ∈ C∞ the operator Ki induces a smoothing

operator on Ω. In particular, for all s ∈ N, p ∈ N, it is bounded linear operator

Ki,Ω : H−s(D,Ei)→ Cp(Ω, Ei) ∩ S∆i
(Ω).

Proof. Indeed, by the definition of the fundamental solution,

∆i(ΦiAi−1 − Ai−1Φi−1)v = Ai−1v − Ai−1v = 0 for all v ∈ C∞comp(
◦

X,Ei−1).

Therefore the pseudo-differential operator (ΦiAi−1−Ai−1Φi−1) (of order (−1) on X) is smooth-

ing on compact subsets of
◦

X. Now the similar statements follows for Ki. �
For x 6∈ ∂D we denote Miv0(x) the following Green integral with a density v0 ∈ C∞(∂D,Ei):

Miv0(x) = −
∫
∂D

GAi(?Ai ?
−1 Φi(x, ·), v0) = −

∫
∂D

(τi(v0), ν̃i+1(Ai ?
−1 Φi(x, ·))y ds(y), x 6∈ ∂D;

(13)

the last identity easily follows from (8). Thus we define the Green transform with a density v0 ∈
D′(∂D,Ei) as the result of the action of the distribution v0 on the ”test-function” (−ν̃i(Ai ?−1

Φi(x, ·)) ∈ C∞(∂D,Ei):

Miv0(x) = −(v0, ν̃i+1(Ai ?
−1 Φi(x, ·))∂D = −(τi(v0), ν̃i+1(Ai ?

−1 Φi(x, ·))∂D, x 6∈ ∂D.

By the construction, Miv0 ∈ S∆i
(
◦

X \ supp v0, Ei) as a parameter dependent distribution; here

supp v0 is the support of v0.

Again, if ∂D is smooth enough (e.g. ∂D ∈ C∞) then the potential Mi induces a bounded

linear operator

Mi : Hs−1/2(∂D,Ei)→ Hs(D,Ei), s ∈ N

(see, for example, [31, 1.2.3.5]).

Now using Stokes formula and the potentials Ti, Mi, Ki we arrive to a homotopy formula

for the complex {Ai} and sections u ∈ C∞(D,Ei) (see [15, Theorem 2.4.8]):

Miu+ TiAiu+ Ai−1Ti−1u+Kiu = χDu. (14)

Of course, the continuity of the operators Ti, Mi, Ki on the Sobolev spaces implies that formula

(14) is still valid for all the sections u ∈ Hs(D,Ei), s ∈ N. We are to extend the homotopy

formula for the complex {Ai} on the scale H−sAi (D,Ei), s ∈ Z+.

Lemma 3.3. For any domain Ω b
◦

X such that ∂Ω ∈ C∞ and D ⊂ Ω the potential M induces

bounded linear operators

Mi,D : H−s−1/2(∂D,Ei)→ H−sAi (D,Ei), Mi,Ω : H−s−1/2(∂D,Ei)→ H−s(Ω, Ei).

Proof. As we already have seen above (see Remark 2.1 and Corollary 2.3), for every section

v0 ∈ H−s−1/2(∂D,Ei) the Poisson integral P(D)
∆i

v0 ∈ H−sAi⊕A∗i−1
(D,Ei) satisfies ti(P(D)

∆i
v0) = v0.

Set

Mi,D = (I − Ti,DAi − Ai−1Ti,D −Ki,D) P(D)
∆i

: H−s−1/2(∂D,Ei)→ H−sAi (D,Ei),
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Mi,Ω = (χD − Ti,ΩAi − Ai−1Ti,Ω −Ki,Ω) P(D)
∆i

: H−s−1/2(∂D,Ei)→ H−s(Ω, Ei).

It follows from Lemmas 3.1, 3.2 and the continuity of the operators P(D)
∆i

and χD that the

defined above operators Mi,D, Mi,Ω are bounded. Let us see that Mi,D and Mi,Ω coincide with

Mi on C∞(∂D,Ei). Indeed, if v0 ∈ C∞(∂D,Ei) then Remark 2.1 implies P(D)
∆i v

0 ∈ C∞(D,Ei)

and

Miv
0 = MiP(D)

∆i
v0 = Miτi(P(D)

∆i
v0).

Now using a homotopy formula (14) we obtain:

χDP(D,i)
∆i

v0 = Miv
0 + Ti,DAiP(D)

∆i
v0 + Ai−1Ti−1,DP(D)

∆i
v0 +KiP(D)

∆i
v0.

Since C∞(∂D,Ei) is dense in H−s−1/2(∂D,Ei) then Mi continuously extends from C∞(∂D,Ei)

onto H−s−1/2(∂D,Ei) as defined above operators Mi,D, Mi,Ω. Moreover, it is easy to understand

that the sections Mi,Dv
0, Mi,Ωv

0 are coincide with the distributions Mv0 on D and Ω \ supp v0

respectively. �

Theorem 3.1. For every section u ∈ HAi(D,Ei) the following formulae hold:

Mi,Du+ Ti,DAiu+ Ai−1Ti−1,Du+Ki,Du = u, (15)

Mi,Ωu+ Ti,ΩAiu+ Ai−1Ti−1,Ωu+Ki,Ωu = χDu. (16)

Proof. Pick u ∈ HAi(D,Ei). Then u ∈ H−sAi (D,Ei) with a number s ∈ Z+ and there is

{uν} ⊂ C∞(D,Ei) converging to u in the space H−sAi (D,Ei). Now the homotopy formula (14)

implies

Miuν + TiAiuν + Ai−1Tiuν +Kiuν = χDuν . (17)

Passing to the limit in the spaces H−sAi (D,Ei) and H−s(Ω, Ei) with respect to ν → ∞ in (17)

we obtain (15) and (16) respectively because of Lemmas 3.1, 3.2, 3.3. �

Remark 3.1. Let f ∈ H−s−1(D,Ei+1). If Ω, Ω1 are bounded domains in
◦

X (with smooth

boundaries) containing D then sections Ti,Ωf ∈ H−s(Ω, Ei) and Ti,Ω1f ∈ H−s(Ω1, Ei) belong

to S∆i
(Ω \ D) and S∆i

(Ω1 \ D) respectively. Since they are constructed as the limits of the

same sequence of sections converging in different spaces, they coincide in (Ω1 ∩ Ω) \ D. The

same conclusion is obviously valid for the smoothing operators Ki,Ω and Ki,Ω1 . Moreover, as the

operators Mi,Ω and Mi,Ω1 are constructed with the use of Ti,Ω, Ki,Ω and Ti,Ω1 , Ki,Ω1 respectively,

this is also true for the sections of the type Mi,Ω(v0) with v0 ∈ Hs−1/2(∂D,Ei). Since Ω ⊂
◦

X is

arbitrary, the Uniqueness Condition 1.1 allows us to say about the sections Tif and Miv
0 from

SF∆i
(
◦

X \D) such that Tif = Ti,Ωf ∈ H−s(Ω, Ei), Miv
0 = Mi,Ωv

0 ∈ H−s(Ω, Ei) for any domain

Ω ⊃ D. �

4 The Cauchy problem in spaces of distributions

Problem 4.1. Given u0 ∈ D′(Γ, Ei), f ∈ HAi+1
(D,Ei+1) find a section u ∈ HAi(D,Ei) such

that

Aiu = f in D, τi(u) = τi(u0) on Γ,
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in the sense of Definition 2.1, i.e.

(u,A∗i g)D = (f, g)D − 〈?ν̃i+1(g), τi(u0)〉Γ for all g ∈ C∞comp(D ∪ Γ, Ei+1). (18)

If i = 0 then A0 has the injective principal symbol and the Cauchy problem has no more

than one solution (see, for instance, [2, Theorem 10.3.5]). Clearly it may have infinitely many

solutions if i > 0. Usually the Uniqueness Theorem of the Cauchy problem for i > 0 is valid

in co-homologies under some convexity conditions on ∂D \ Γ (cf. [18, Corollary 3.2]). Instead

of looking for a version of Uniqueness Theorem we will try to choose a canonic solution of the

Cauchy problem (see §5 below for solutions in H0
Ai

(D,Ei)).

We easily see that f and u0 should be coherent. Namely, as A∗iA
∗
i+1 ≡ 0, taking g = A∗i+1w

with w ∈ C∞comp(D ∪ Γ, Ei+2) in (18) we conclude that for the solvability of problem 4.1 it is

necessary that

(f, A∗i+1w)D = 〈?ν̃i+1(A∗i+1w), τi(u0)〉Γ for all w ∈ C∞comp(D ∪ Γ, Ei+2). (19)

Let us discuss this. First we note that, due to Corollary 2.6 and to the properties of

the complex, Ai+1f = 0 in D if the Cauchy problem is solvable. This corresponds to w ∈
C∞comp(D,Ei+2) in (19).

Besides, the operator Ai induces the tangential operator {Ai,τ} on ∂D (see, for instance, [15,

§3.1.5]). More precisely, let û0 ∈ D′(∂D,Ei). Pick a section û ∈ HAi(D,Ei) satisfying τi(û) =

τi(û
0) on ∂D (there is at least one such a section, P(D)

∆i
τi(û

0)). Then set Ai,τ û
0 = τi+1(Aiû).

If we fix g ∈ C∞(∂D,Ei+1) then, by Remark 2.1, the section w = P(D)
∆i+2

τ̃i+1(g) belongs to the

space C∞(D,Ei+2). Now, easily, Definition 2.1 and Lemma 2.1 imply that

〈?g,Ai,τ û0〉 = 〈?ν̃i+2(τ̃i+1(g)), τi+1(Aiû)〉 = 〈?ν̃i+2(w), τi+1(Aiû)〉 =

(Aiû, A
∗
i+1w)D = 〈?ν̃i+1(A∗i+1w), τi(û)〉 = 〈?ν̃i+1(A∗i+1w), τi(û

0)〉. (20)

In particular, this means that Ai,τ û
0 does not depend on the choice of û ∈ HAi(D,Ei) with

τi(û) = τi(û
0) on ∂D.

Lemma 4.1. For the Cauchy data u0 and f , identity (19) holds if and only if Ai+1f = 0 in D

and τi+1,Γ(f) = Ai,τu
0 on Γ.

Proof. Indeed, as we have noted above, (19) implies Ai+1f = 0 in D. Then, similarly to

(20), it follows from Definition 2.1 that, with w = P(D)
∆i+2

τ̃i+1(g),

〈?g, τi+1(f)〉 = 〈?ν̃i+2(τ̃i+1(g)), τi+1(f)〉 = 〈?ν̃i+2(w), τi+1(f)〉 = (f, A∗i+1w)D

for all g ∈ C∞(∂D,Ei+1) if Ai+1f = 0 in D. Therefore taking û0 = u0 on Γ and g ∈
C∞comp(Γ, Ei+1) in (20) we conclude that τi+1,Γ(f) = Ai,τu

0 on Γ too, if identity (19) holds.

Back, if Ai+1f = 0 in D and τi+1,Γ(f) = Ai,τu
0 on Γ then , again applying Definition 2.1

and calculating as in (20), we obtain for all w ∈ C∞comp(D ∪ Γ, Ei+2):

(f, A∗i+1w)D = 〈?ν̃i+2(w), τi+1(f)〉 = 〈?ν̃i+2(w), Ai,τu
0〉 = 〈?ν̃i+1(A∗i+1w), τi(u

0)〉,

which was to be proved. �
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It is important to note that Lemma 4.1 allows the point wise check of necessary solvability

conditions for Problem 4.1, at least if the Cauchy data f and u0 are smooth.

Now choose a domain D+ in such a way that the set Ω = D ∪ Γ∪D+ is a bounded domain

with smooth boundary in
◦

X. It is convenient to denote F± the restrictions of a section F onto

D± (here D− = D).

Further, for u0 ∈ H−s−1/2(Γ, Ei), choose a representative ũ0 ∈ H−s−1/2(∂D,Ei). We have

seen above the potentials Miũ0 and Tif satisfy ∆i(Miũ0) = 0 and ∆i(Tif) = 0 everywhere

outside D as parameter dependent distributions. Hence the section

Fi = Mi,Ωτi(ũ0) + Ti,Ωf

belongs to S∆i
(D+) ∩H(Ω, Ei). The Green formula (16) shows that the potential Fi contains

a lot of information on solvability conditions of Problem 4.1.

Denote χD(H(D,Ei)) the image of the space H(D,Ei) under the map χD : H(D,Ei) →
H(Ω, Ei) (see map (5)).

Theorem 4.1. Let ∆i−1, ∆i, ∆i+1 satisfy the Uniqueness Condition 1.1. Then the Cauchy

Problem 4.1 is solvable if and only if condition (19) holds true and there is a section Fi ∈
H(Ω, Ei) such that Ai∆iFi = 0 in Ω and (Fi −Fi) ∈ χD(H(D,Ei)).

Proof. Let Problem 4.1 be solvable and u be its solution. The necessity of condition (19)

is already proved. Set

Fi,u = Mi,Ωτi(ũ
0) + Ti,Ωf − χDu. (21)

Lemmas 3.1, 3.1, 3.3 and Remark 3.1 imply that Fi,u ∈ H−s(Ω, Ei) with some s ∈ Z+. Clearly

(Fi −Fi) = χDu ∈ χD(H(D,Ei)). Then it follows from homotopy formula (16) that:

Fi,u = Mi,Ω(τi(ũ
0)− τi(u)))− Ai−1Ti−1,Ωu−Kiu. (22)

Since (τi(ũ
0)− τi(u)) = 0 on Γ then Mi,Ω(τi(ũ

0)− τi(u)) belongs to S∆i
(
◦

X \ Γ) as a parameter

dependent distribution. That is why, using Lemma 3.1, we obtain:

∆iFi,u = −∆iAi−1Ti−1,Ωu = −Ai−1∆iTi−1,Ωu = −Ai−1A
∗
i−1χDu in Ω. (23)

In particular, Ai∆iFi,u = 0 in Ω.

Back, let there be sections Fi ∈ H(Ω, Ei) and u ∈ H(D,Ei) such that Ai∆iFi = 0 in Ω and

χDu = Fi −Fi. (24)

Let us show that the section u is a solution to Problem 4.1. With this aim we consider the

following functional w(ũ0) on the space C∞(D,Ei+1):

〈w(ũ0), v〉 = (τi(ũ
0), ν̃i+1(v))∂D for all v ∈ C∞(D,Ei+1).

As ũ0 ∈ D′(∂D,Ei) then ũ0 ∈ H−s−1/2(∂D,Ei) with some s ∈ Z+ and hence for all v ∈
C∞(D,Ei+1) we have:

|〈w(ũ0), v〉| ≤ ‖τi(ũ0)‖−s−1/2,∂D‖ν̃i+1(v)‖s+1/2,∂D ≤ C ‖τi(ũ0)‖−s−1/2,∂D‖v‖s+1,D
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with a constant C > 0 which does not depend on ũ0 and v. Therefore w(ũ0) ∈ H−s−1(D,Ei+1)

and its support belongs to ∂D.

Clearly, C∞comp(D ∪ Γ, Ei+1) ⊂ C∞comp(Ω, Ei+1) and Whitney theorem implies that every

section from C∞comp(D∪Γ, Ei+1) may be extended up to an element of the space C∞comp(Ω, Ei+1).

Thus, (18) is equivalent to the following identity:

g = AiχDu− χDf + χDw(ũ0) ≡ 0 in Ω. (25)

That is why u is a solution to Problem 4.1 if and only if u ∈ HAi(D,Ei) and the identity (25)

holds. By the very construction, g belongs to D′(Ω, Ei+1) and its support lies in D.

Then for all v ∈ C∞comp(Ω, Ei+1) we have

〈g,∆i+1v〉Ω = (χDu,A
∗
i∆i+1v)Ω − (χDf,∆i+1v)Ω + (χDw(ũ0),∆i+1v)Ω

(Fi −Fi,∆iA
∗
i v)Ω − (f,∆i+1v)D + (τi(ũ

0), ν̃i+1(∆i+1v))∂D =

(Fi,∆iA
∗
i v)Ω − (f,∆i+1v)D + (τi(ũ

0), ν̃i+1(∆i+1v))∂D, (26)

because A∗i∆i+1 = ∆iA
∗
i and Ai∆iFi = 0 in Ω.

Further, by Lemma 3.1, we see that for all v ∈ C∞comp(Ω, Ei+1),

(Ti,Ωf,∆iA
∗
i v)Ω = (A∗iχDf, A

∗
i v)Ω = (f, AiA

∗
i v)D. (27)

Set ũ = P(D)
∆i

τi(ũ
0). This section belongs to HAi⊕A∗i−1

(D,Ei) (see Remark 2.1 and Corollary 2.3).

By the definition, τi(ũ) = τi(ũ0) on ∂D. Now Lemma 3.3, the properties of the fundamental

solutions and Definition 2.1 imply that for all v ∈ C∞comp(Ω, Ei+1) we have:

(Mi,Ωτi(ũ
0),∆iA

∗
i v)Ω = (χDũ− Ti,ΩAiu− Ai−1Ti−1,Ωũ−Ki,Ωu,∆iA

∗
i v)Ω =

(ũ, A∗iAiA
∗
i v)D − (Aiũ, AiA

∗
i v)D = −(τi(ũ

0), ν̃i+1(AiA
∗
i v)∂D. (28)

Therefore, using (26), (27), (28) we conclude that

〈g,∆i+1v〉Ω = −(f, A∗i+1Ai+1v)D + (τi(ũ
0), ν̃i+1(A∗i+1Ai+1v))∂D = 0

for all v ∈ C∞comp(Ω, Ei+1) because of condition (19).

Thus, ∆i+1g = 0 in Ω and g = 0 in D+. It follows from Uniqueness Condition 1.1 that g ≡ 0

in Ω, i.e. identity (18) holds. In particular this means that Aiu = f in D and, by Corollary

2.5, we see that u ∈ HAi(D,Ei), which was to be proved. �

Corollary 4.1. Let f ∈ H−s−1(D,Ei+1), u0 ∈ H−s−1/2(Γ, Ei). The Cauchy problem 4.1 is

solvable in the space H−sAi (D,Ei) if and only if condition (19) is fulfilled and there is a section

Fi ∈ H−s(Ω, Ei) satisfying Ai∆iFi = 0 in Ω and such that (Fi −Fi) ∈ χD(H−s(D,Ei)).

Proof. Indeed, if Problem 4.1 is solvable in H−sAi (D,Ei), then condition (19) is fulfilled and

Fi = Fi − χDu (see (21)). Hence, by Lemma 3.3, the section F belongs to H−s(Ω, Ei) and

(Fi −Fi) ∈ χD(H−s(D,Ei)).

Back, if condition (19) is fulfilled, Fi ∈ H−s(Ω, Ei) satisfies Ai∆iFi = 0 in Ω and (Fi−Fi) ∈
χD(H−s(D,Ei)) then Problem 4.1 is solvable. Besides, one of its solutions u is given by formula
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( 24). In particular, χDu = (Fi − Fi) belongs to H−s(Ω, Ei). Pick v ∈ C∞(D,Ei). Then, by

Whitney Theorem, there is a section V ∈ C∞(Ω, Ei) with ‖V ‖s,Ω = ‖v‖s,D and v = V in D.

By the definition,

|(u, v)D| = |(χDu, V )Ω| ≤ ‖χDu‖−s,Ω‖v‖s,D,

i.e. u ∈ H−s(D,Ei). Finally, as Aiu = f ∈ H−s−1(D,Ei+1), then u ∈ H−sAi (D,Ei) according to

Corollary 2.5. �
If i = 0 then the operator A0 has injective principal symbol and Theorem 4.1 has the

following form (cf. [2], [12] for the operators with real analytic coefficients and f = 0).

Corollary 4.2. Let f ∈ H(D,E1), u0 ∈ D′(Γ, E0). The Cauchy Problem 4.1 is solvable in the

space HA0(D,E0) if and only if condition (19) is fulfilled and there is a section F0 ∈ H(Ω, E0),

coinciding with F0 in D+ and such that ∆0F0 = 0 in Ω.

Proof. If i = 0 then the operator A∗−1 in (23) equals to zero and therefore ∆0F0 = 0 in Ω.

Back, as ∆0F0 = 0 then the section F0 is smooth in Ω. According to [2, Theorem 9.4.8]

the section F0 belongs to H(Ω, E0) if and only if it has finite order of growth near ∂Ω. As

D ⊂ Ω, the section F−0 has the same order of growth (in D) near ∂D. Then F−0 ∈ H(D,E0),

u = F−0 −F−0 in H(D,E0) and (F0 −F0) ∈ χD(H(D,E0) because F0 = F0 in D+. �
In the next section we will obtain a similar result in positive degrees of the complex {Ai}

over Lebesgue space L2(D,Ei) choosing a canonical solution u in (22). In any case, Theorem

4.1 can be easily reformulated to be like Corollary 4.2

Corollary 4.3. The Cauchy Problem 4.1 is solvable if and only if condition (19) is fulfilled and

there is a section Fi ∈ H(Ω, Ei) such that (Fi − Fi) ∈ χD(H(D,Ei)) and ∆iFi co-homological

to zero in Ω with respect to the complex {Ai}.

Proof. It follows from Theorem 4.1 and (23) because Ai ◦ Ai−1 ≡ 0. �

5 The Cauchy problem in the Lebesgue space

Consider now the case s = 0. Denote Σ0 the null space of the Cauchy Problem 4.1 for s = 0,

i.e. Σ0 consists of L2(D,Ei)-sections w with Aiw = 0 in D and τi(w) = 0 on Γ, or, the same

(w,A∗i v)D = 0 for all v ∈ C∞comp(D ∪ Γ, Ei+1). (29)

Formula (29) guarantees that Σ0 is a (closed) subspace in L2(D,Ei).

As the adjoint complex {A∗i } is elliptic too we may give similar definition of weak boundary

value of a normal part (with respect to {Ai}) of a section on Γ.

Definition 5.1. We say that a section u ∈ HA∗i−1
(D,Ei), satisfying A∗i−1u = h in D with

h ∈ H(D,Ei−1), has a weak boundary value νi,Γ(u) = νi(u0) on Γ for u0 ∈ D′(Γ, Ei) if

(h, g)D − (u,Ai−1g)D = 〈?τ̃i−1(g), νi(u0)〉Γ for all g ∈ C∞comp(D ∪ Γ, Ei−1).

Theorem 5.1. Let f ∈ H−1(D,Ei+1), u0 = 0. If the Cauchy Problem 4.1 is solvable in

H0
Ai

(D,Ei) then its unique L2(D,Ei) -orthogonal to Σ0 solution u(f) satisfies νi,Γ(u(f)) = 0

on Γ in the sense of Definition 5.1 and A∗i−1u(f) = 0 in D.
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Proof. Obviously, H0
Ai

(D,Ei) is a Hilbert space with the scalar product

(·, ·)0,Ai = (·, ·)0 + (Ai·, Ai·)−1.

Then the orthogonal complement to Σ0 in this space coincides with L2(D,Ei)-orthogonal com-

plement to Σ0. Thus, if the Cauchy Problem 4.1 has a solution u in H0
Ai

(D,Ei) then its

L2(D,Ei) -orthogonal projection u(f) to the orthogonal complement to Σ0 is also a solution to

Problem 4.1 (it is evidently unique with the prescribed property). Clearly, any section of the

type Ai−1φ, with v ∈ C∞comp(D,Ei−1), belongs to Σ0. Hence

(u(f), Ai−1v)D = 0 for all v ∈ C∞comp(D,Ei−1),

and then A∗i−1u(f) = 0 in D.

Now, according to Corollaries 2.2 and 2.7, the section u(f) has traces of νi(u(f)) on ∂D,

belonging to H−1/2(D,Ei). Hence, by Definition 5.1, the normal part νi,Γ(u)f)) vanishes on Γ

if and only if

(u(f), Ai−1v)D = 0 for all v ∈ C∞comp(D ∪ Γ, Ei−1). (30)

Further, it follows from Corollary 2.2 that the space H0
Ai

(D,Ei) is the Hilbert space with the

scalar product

(·, ·)0,τi = (·, ·)0 + (τi·, τi·)−1/2.

Again we see that the orthogonal complement to Σ0 in this space coincides with L2(D,Ei)-

orthogonal complement to Σ0. Denote πτΓ the orthogonal projection on the subspace ΣτΓ ,

consisting of sections with vanishing tangential parts on Γ. Definition 2.1 guarantees that the

subspace ΣτΓ is closed in H0
Ai

(D,Ei). As τi,Γ(u(f)) = u0 = 0 then for all v ∈ C∞comp(D∪Γ, Ei−1)

we obtain:

(u(f), Ai−1v)D = (πτΓu(f), Ai−1v)0,τi = (u(f), πτΓAi−1v)0,τi = (u(f), πτΓAi−1v)D. (31)

On the other hand, for all g ∈ C∞comp(D,Ei+1) we have:

(πτΓAi−1v,A
∗
i g)D = (πτΓAi−1v, A

∗
i g)0,τi = (Ai−1v, πτΓA

∗
i g)0,τi = (Ai−1v, A

∗
i g)D = 0,

because Ai ◦ Ai−1 ≡ 0. Therefore AiπτΓAi−1v = 0 in D, and πτΓAi−1v ∈ Σ0 for all v ∈
C∞comp(D ∪ Γ, Ei−1). Hence, formulae (30) and (31) and the fact that u(f) is orthogonal to Σ0

in L2(D,Ei), imply that νi,Γ(u(f)) = 0 on Γ. �

Corollary 5.1. Let f ∈ H−1(D,Ei+1), u0 ∈ H−1/2(Γ, Ei). If the Cauchy Problem 4.1 is

solvable in the space H0
Ai

(D,Ei) then the section u(f, ũ0) = u(f − AiP(D)
∆i

τi(ũ
0)) + P(D)

∆i
τi(ũ

0)

is also its solution satisfying νi(u(f, ũ0)) = 0 on Γ, A∗iu(f, ũ0) = A∗iP
(D)
∆i

τi(ũ
0) in D. Besides,

if f ∈ Hs
loc(D ∪ Γ, Ei+1), u0 ∈ Hs+1/2

loc (Γ, Ei) then u(f, ũ0) ∈ Hs+1
loc (D ∪ Γ, Ei), s ∈ Z+.

Proof. Let u ∈ H0
Ai

(D,Ei) be a solution to Problem 4.1 with data f ∈ H−1(D,Ei+1),

u0 ∈ H−1/2(Γ, Ei). Then, according to Lemma 2.1 and Remark 2.1, we have on Γ:

τi(ũ
0) = τi(u

0), τi(P(D)
∆i

τi(ũ
0)) = τi(u

0), νi(P(D)
∆i

τi(ũ
0)) = 0.
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Hence Problem 4.1 with data f̂ = f − AiP(D)
∆i

τi(ũ
0) ∈ H−1(D,Ei+1) and û0 = 0 is solvable in

the space H0
Ai

(D,Ei); the section û = u − P(D)
∆i

τi(ũ
0) is its solution. Therefore Theorem 5.1

implies that the section u(f, ũ0) is a solution to Problem 4.1 with data f ∈ H−1(D,Ei+1), u0 ∈
H−1/2(Γ, Ei). By the construction it satisfies νi(u(f, ũ0)) = 0 on Γ, A∗i v(f, ũ0) = A∗iP

(D)
∆i

τi(ũ
0)

in D.

Finally, if f ∈ Hs
loc(D ∪ Γ, Ei) then, using Theorem 5.1 and Lemma 2.1, we conclude that

t(u(f)) = 0 on Γ,

∆iu(f) = (A∗iAi + Ai−1A
∗
i−1)u(f) = A∗i f ∈ Hs−1

loc (D ∪ Γ, Ei).

Therefore u(f) ∈ Hs+1
loc (D ∪ Γ, Ei), s ∈ Z+, because of Theorem on local improvement of

smoothness for solutions to Dirichlet Problem (see, for instance, [2, Theorem 9.3.17]). Similarly,

if u0 ∈ H
s+1/2
loc (Γ, Ei) then P(D)

∆i
τi(ũ

0) ∈ Hs+1
loc (D ∪ Γ, Ei) according to Remark 2.1 and [2,

Theorem 9.3.17]). Thus, u(f, ũ0) belongs to Hs+1
loc (D ∪ Γ, Ei), which was to be proved. �

Since Corollary 5.1 practically reduces the Cauchy Problem 4.1 to the case with zero bound-

ary data, we consider the situation in detail.

Theorem 5.2. Let ∆i−1, ∆i, ∆i+1 satisfy the Uniqueness Condition 1.1. If f ∈ H−1(D,Ei+1),

u0 = 0 then Problem 4.1 is solvable in the space H0
Ai

(D,Ei) if and only if Ai+1f = 0 in D,

τi+1(f) = 0 on Γ and there is a section Fi ∈ L2(Ω, Ei) ∩ S∆i
(Ω) coinciding with Tif in D+.

Proof. As u0 = 0, then Fi = Tif . Moreover, by Lemma 4.1, condition (19) is equivalent to

the following two conditions: Ai+1f = 0 in D and τi+1(f) = 0 on Γ. Now if there is a section

Fi ∈ L2(Ω, Ei) ∩ S∆i
(Ω) coinciding with Tif in D+ then (Tif)±,F±i ∈ L2(D±, Ei) ∩ S∆i

(Ω),

(Tif −Fi) ∈ χD(L2(D,Ei)) and Ai∆iFi = 0 in Ω. Therefore, it follows from Corollary 4.1 that

Problem 4.1 is solvable in the space H0
Ai

(D,Ei) if Ai+1f = 0 in D and τi+1(f) = 0 on Γ. We

note that formulae (22) and (24) yield:

u(f) = (Tif −F−i ) ∈ L2(D,Ei). (32)

Back, if Problem 4.1 is solvable in the space H0
Ai

(D,Ei) then Ai+1f = 0 in D, τi+1(f) = 0

on Γ. Moreover, the extension Fi,u ∈ L2(D,Ei) ∩ SAi∆i
(Ω) of the section Tif from D+ on

Ω is given by formula (22). Putting the solution u(f) into (22) and using formula (23) and

Definition 5.1, we obtain for all v ∈ C∞comp(Ω, Ei):

−〈∆iFi,u(f), v〉Ω = 〈χDu(f), Ai−1A
∗
i−1v〉Ω = (u(f), Ai−1A

∗
i−1v)D = (A∗iu(f), A∗i v)D = 0,

because νi,Γ(u(f)) = 0, A∗i−1u(f) = 0 in D, i.e. ∆iFi,u(f) = 0 in Ω. �

Remark 5.1. Theorem 5.2 easily implies conditions of local solvability of the Cauchy problem

for complex {Ai} in L2(D,Ei) for u0 = 0. Indeed, fix a point x0 ∈ Γ. Let U be a (one-sided)

neighborhood of x0 in D and Γ̂ = ∂U∩Γ. Set F̂i = TiχUf . As Fi = F̂i+TiχD\Uf we see that F+
i

extends as a solution to the Laplacian ∆i in Ω̂ = U∪Γ̂∪D+ if and only if the potential F̂+
i does.

Hence, under condition (19), the solution of the Cauchy problem exists in the neighborhood U

where the extension of the potential F+
i does.
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Also we would like to note that Theorem 5.2 gives not only the solvability conditions to

Problem 4.1 but the solution itself, of course, if it exists (see (32)). It is clear that we can use

the theory of functional series (Taylor series, Laurent series, etc.) in order to get information

about extendability of the potential T+
i f (cf. [8], [2]). However in this paper we will use the

theory of Fourier series with respect to the bases with the double orthogonality property (cf.

[32], [2] or elsewhere). Moreover, using formula (32) we can construct approximate solutions of

problem 4.1 in the Lebesgue space L2(D,Ei).

Lemma 5.1. If ω b Ω is a domain with a piece-wise smooth boundary and Ω\ω has no compact

(connected) components then there exists an orthonormal basis {bν}∞ν=1 in L2(Ω, Ei) ∩ S∆i
(Ω)

such that {bν|ω}∞ν=1 is an orthogonal basis in L2(ω,Ei) ∩ S∆i
(ω).

Proof. In fact, these {bν}∞ν=1 are eigen-functions of compact self-adjoint linear operator

R(Ω, ω)∗R(Ω, ω), where

R(Ω, ω) : L2(Ω, Ei) ∩ S∆i
(Ω)→ L2(ω,Ei) ∩ S∆i

(ω)

is the natural inclusion operator (see [2] or [9, theorem 3.1]). �
Now we can use the basis {bν} in order to simplify Theorem 5.2. For this purpose fix

domains ω b D+ and Ω as in Lemma 5.1 and denote by

cν(Tif
+) =

(Tif
+, bν)L2(ω,Ei)

‖bν‖2
L2(ω,Ei)

, ν ∈ N,

the Fourier coefficients of Tif
+ with respect to the orthogonal system {bν|ω} in L2(ω,Ei).

Corollary 5.2. Let f ∈ H−1(D,Ei+1), u0 = 0. Problem 4.1 is solvable in the space H0
Ai

(D,Ei)

if and only if Ai+1f = 0 in D, τi+1(f) = 0 on Γ and and the series
∑∞

ν=1 |cν(Tif+)|2 converges.

Proof. Indeed, if Problem 4.1 is solvable in L2(D,Ei) then, according to Theorem 5.2

condition (19) is fulfilled, and there exists a function Fi ∈ L2(Ω, Ei) ∩ S∆i
(Ω) coinciding with

Tif
+ in ω. By Lemma 5.1 we conclude that

Fi(x) =
∞∑
ν=1

kν(Fi)bν(x), x ∈ Ω, (33)

where kν(Fi) = (Fi, bν)L2(Ω,Ei), ν ∈ N, are the Fourier coefficients of Fi with respect to the

orthonormal basis {bν} in L2(Ω, Ei) ∩ S∆i
(Ω). Now Bessel’s inequality implies that the series∑∞

ν=1 |kν(Fi)|2 converges.

Finally, the necessity of the corollary holds true because

cν(Tif
+) =

(R(Ω, ω)Fi, R(Ω, ω)bν)L2(ω,Ei)

(R(Ω, ω)bν , R(Ω, ω)bν)L2(ω,Ei)

=
(Fi, R(Ω, ω)∗R(Ω, ω)bν)L2(Ω,Ei)

(bν , R(Ω,Ω)∗R(Ω, ω)bν)L2(ω,Ei)

= kν(Fi).

Back, if the hypothesis of the corollary holds true then we invoke the Riesz-Fisher theorem.

According to it, in the space L2(Ω, Ei) ∩ S∆i
(Ω) there is a section

Fi(x) =
∞∑
ν=1

cν(Tif
+)bν(x), x ∈ Ω. (34)
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By the construction, it coincides with Tif
+ in ω. Therefore, using Theorem 5.2, we conclude

that Problem 4.1 is solvable in L2(D,Ei). �
The examples of bases with the double orthogonality property be found in [9], [2], [32].

Let us obtain Carleman’s formula for the solution of Problem 4.1. For this purpose we

introduce the following Carleman’s kernels:

CN(y, x) = (A∗i )
′
yΦi(y, x)−

N∑
ν=1

cν((A
∗
i )
′
yΦi(y, ·))bν(x), N ∈ N, x ∈ Ω, y 6∈ ω, x 6= y.

Corollary 5.3. If Problem 4.1 is solvable in L2(D,Ei) for data u0 = 0 and f ∈ L2(D,Ei+1) ∩
Hs
loc(D ∪ Γ, Ei+1) then u(f) belongs to Hs+1

loc (D ∪ Γ, Ei) and the following Carleman formula

holds:

u(f)(x) = lim
N→∞

∫
D

〈CN(·, x), f〉y dy (35)

where the limit converges in the spaces H0
Ai

(D,Ei) and Hs+1
loc (D ∪ Γ, Ei).

Proof. Since ω ∩D = ∅, using Fubini Theorem we have for all ν ∈ N:

cν(Tif
+) =

∫
D

〈cν((A∗i )′yΦi(y, ·)), f〉y dy.

This exactly yields identity (35) after applying Corollary 5.2, formula (34) and regrouping the

summands in (32).

Besides, since Fi and each function bν are solutions of the elliptic system ∆i in Ω, the Stiltjes-

Vitali theorem implies that the series (34) converges in C∞loc(Ω, Ei). Therefore we additionally

conclude that the limit converges to u(f) inHs+1
loc (D∪Γ, Ei) because Tif ∈ H1(D,Ei)∩Hs+1

loc (D∪
Γ, Ei) due to the transmission property (see [31]). �

Considering general complexes with smooth coefficients we arrive to the following natural

question: under what conditions on the domain D the complex {Ai} is exact at the positive

degrees ? As far as we know there is no answer in the general situation. It is known that the

formally exact differential elliptic complexes with real analytic coefficients are locally exact at

the positive degrees (see, for instance, [15], [14]). Of course, all the Hilbert complexes with

constant coefficients are exact at the positive degrees over the spaces of distrubutions in convex

domains (see, for instance, [33]. Thus we are to consider this most investigated situation.

However we emphasize that the use of the above proposed approach to the Cauchy problem for

the elliptic complexes does not involve the information on the exactness of the complex!

6 Complexes with constant coefficients

Now we are to discuss examples for complexes with constant coefficients. Actually we can say

much more, at least for domains of the special type.

Corollary 6.1. Let (3) be an elliptic first order complex with constant coefficients in Rn. If

∂D \ Γ is a part of a strictly convex domain Ω ⊃ D, then for any section w ∈ C∞(D,Ei) there
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is a section h ∈ L2(D,Ei−1)∩C∞loc(D ∪Γ, Ei−1) such that τi(Ai−1h) = 0 on Γ and the following

formula holds true:

w(x) = P(D)
∆i

χΓτi(w))x) + lim
N→∞

∫
D

〈CN(·, x), Ai(u− P(D)
∆i

χΓτi(w))〉y dy + Ai−1h(x), (36)

where the limit converges in the spaces H0
Ai

(D,Ei) and C∞loc(D ∪ Γ, Ei).

Proof. Under the hypothesis of the corollary, Problem 4.1 is solvable for the data τi,Γ(u) ∈
C∞(Γ, Ei) and Aiu ∈ C∞(D,Ei+1). Extending τi,Γ(w) by zero onto all the boundary of D,

we obtain w̃0 = χΓτi(w) ∈ L2(∂D,Ei). Now Corollary 5.1 implies that the section u(Aiw, w̃0)

belongs to the space L2(D,Ei)∩C∞loc(D∪Γ, Ei) and v = w−u(Aiw, ũ0) ∈ Σ0∩C∞loc(D∪Γ, Ei).

Denote v0 the extension by zero of v from D on Ω. Clearly, v0 ∈ L2(Ω, Ei). As τi,Γ(v) = 0,

then Ai+1v0 = 0 in Ω and hence there is a section h̃ ∈ L2(Ω, Ei−1) ∩ H1
loc(Ω, Ei−1) such that

Ai−1h̃ = v0 in Ω (see, for instance, [33]). Set h = h̃− Ai−2Φi−2χDA
∗
i−2h̃. Then

A∗i−2∆i−1h = A∗i−2Ai−2A
∗
i−2h̃− A∗i−2Ai−2χDA

∗
i−2h̃ = 0 in D,

Ai−1∆i−1h = Ai−1A
∗
i−1Ai−1h̃ = Ai−1A

∗
i−1v in D,

As the operator (Ai−1 ⊕ A∗i−2)∆i−1 has injective symbol and

(Ai−1 ⊕ A∗i−2)∆i−1h = (Ai−1A
∗
i−1v, 0) ∈ C∞loc(D ∪ Γ, (Ei, Ei−2)),

we see that h ∈ C∞loc(D ∪ Γ, Ei−1) satisfies Ai−1h = w in D. Thus, v = u(Aiw, ũ0) +Ai−1h and

formula (36) follows from Corollary 5.3. �
At the conclusion let us consider two examples.

Example 6.1. Let (3) be the de Rham complex over Rn, i.e Ei be the bundle of the exterior

differential forms of the degree i and Ai be the differentiation operator di for the exterior dif-

ferential forms. Choosing coordinates x = (x1, ..., xn) ∈ Rn we have for a form u ∈ C∞(Rn,Λi):

u =
∑
|I|=i

uI(x) dxI , diu =
n∑
j=1

∑
|I|=i

∂uI
∂xj

(x) dxj ∧ dxI ,

where I = (j1, . . . , ji), dxI = dxj1 ∧ · · · ∧ xji and ∧ is the exterior product for the differential

forms.

Let ∗ be the Hodge operator for the differential forms (see, for instance, [15]), in particular,

dxI ∧ ∗dxI = dx. Then ∆i = ∆Ik(i), where ∆ is the usual Laplace operator in Rn and Ik(i) is

the unit k(i)× k(i)-matrix. If Φi = Ik(i) Φ, where Φ is the standard fundamental solution to ∆

of the convolution type, then Mi is the Norguet integral and (16) is the the Norguet integral

formula (see, for instance, [15, §2.5]).

Let {h(j)
ν } be the set of homogeneous harmonic polynomials forming a complete orthonormal

system in the space L2(∂B(0, 1)) on the unit sphere ∂B(0, 1) in Rn, n ≥ 2 (see [34, p. 453]).

Therefore {h(j)
ν|∂B(0,1)} are spherical harmonics where ν is the homogeneity, j is the number of

the polynomial of degree ν in the basis, 1 ≤ j ≤ J(ν, n) with J(ν, n) = (n+2ν−2)(n+ν−3)!
ν!(n−2)!

, ν > 0,
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J(0, n) = 1. It is easy to see that the system {h(j)
ν } is orthogonal in L2(B(0, R)) for any ball

B(0, R).

Let D be a part of the unit ball Ω cut off by a hypersurface Γ 63 0. Then Carleman kernel

in formulae (35), (36) has the following form:

CN(y, x) = ∗ydyΦi(y, x)−
∑
|I|=i

N∑
µ=0

J(µ,n)∑
j=1

∗ydy

(
h

(j)
µ (y) dyI

|y|n+2µ−2(n+ 2µ− 2)

)
h(j)
µ (x) dxI .

We note that the operators di are non-zero for 0 ≤ i ≤ n− 1 only.

Hence for n = 1 the operator d0 is the usual differentiation and all the other operators di
are identically zeros. Then the Cauchy problem for an interval D = (a, b) ⊂ R is well known:

given a distribution f on (a, b) find a distribution u on [a, b) such that{
u′(x) = f(x), x ∈ (a, b),

u(a) = 0.

This problem is well-posed in the Sobolev spaces and its solution is given by the integral

u(x) =

∫ x

a

f(t) dt,

at least for f from the Sobolev spaces of a non-negative smoothness. For elements f from the

Sobolev spaces of a negative smoothness the interpretations of the integral are also well known.

For n = 2 the Cauchy problem for the de Rham complex at the degree i = 1 can be

inerpretated as follows. Let D be a bounded domain in R2 and

G = {(x1, x2, x3) : (x1, x2) ∈ D, 0 < x3 < A} ⊂ R3

be a cylinder with the base D. If we consder G as a bassin where the liquid behaves similarly

in every section

Db = {(x1, x2, b) : (x1, x2) ∈ D, 0 < b < A}

then the (stationary) flow of the ideal non-contractible liquid can be described by the system

of equations {
∂u1

∂x2
− ∂u2

∂x1
= h in D,

∂u1

∂x1
+ ∂u2

∂x2
= g in D,

where the vector u = (u1, u2) corresponds to the velocity vector of the fluid and the components

h, g reflect the rotation points and the source points respectively (see, for example, [35, Ch.

III, §2]). This exactly means

d1u = f in D, d∗0u = −g in D,

for the differential forms

u(x) = u1(x)dx1 + u2(x)dx2, f(x) = h(x)dx1 ∧ dx2, g(x)
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of the degrees 1, 2 and 0 respectively. If (n1(x), n2(x)) is the unit normal vector with respect

to ∂D at the point x then

τ1(u) = n2u1 − n1u2 on ∂D, ν1(u) = n1u1 + n2u2 on ∂D.

According to Theorem 5.2 the Cauchy problem for the de Rham complex in D with boundary

data on Γ ⊂ ∂D, i.e. {
d1u = f in D,

τ1(u) = 0 on Γ,

is equivalent to the following problem
d1v = f in D,

d∗0v = 0 in D,

τ1(u) = 0 on Γ,

ν1(u) = 0 on Γ.

The last one is obviously the Cauchy problem for the classical Cauchy-Riemann system with

respect to the function w(z) = v2(x1, x2) +
√
−1v1(x1, x2) with z = x1 +

√
−1x2:{

∂w
∂z

= f/2 in D,

w = 0 on Γ,

where ∂
∂z

= 1
2
( ∂
∂x1

+
√
−1 ∂

∂x2
). Thus, according to Hadamard’s example (see [1]) the Cauchy

problem for the de Rham complex in R2 at the degree 1 is ill-posed in all the standard functional

spaces (the spaces of smooth functions, the Sobolev spaces etc.).

For n = 3 the operators d0, d1, d2 can be identifyed with the famuos gradient operator ∇,

the rotor operator rot and the divergence operator div respectively which are widely used in

Mechanics, Hydrodinamics, Electrodynamics and so on:

d0 ≈ ∇ =

 ∂
∂x1
∂
∂x2
∂
∂x3

 , d1 ≈ rot =

 0 − ∂
∂x3

∂
∂x2

∂
∂x3

0 − ∂
∂x1

− ∂
∂x2

∂
∂x1

0

 , d2 ≈ div =
(

∂
∂x1

∂
∂x2

∂
∂x3

)
,

d∗0 ≈ −div, d∗2 ≈ rot, d∗2 ≈ −∇

For instance, according to Theorem 5.2, the Cauchy problem for the de Rham complex at the

degree 1 for a domain D ⊂ Rn, a set Γ ⊂ ∂D and a datum f = (f1, f2, f3) is equivalent to the

Cauchy problem for the (stationary) Maxwell type system with respect to the vector function

u = (u1, u2, u3): 
rotu = f in D,

divu = 0 in D,

u = 0 on Γ.

We refer to [36] for applications of the theory of differential complexes to the investigation of

the Maxwell type equations.
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Example 6.2. Let (3) be the Dolbeault complex over Cn, i.e Ei be the bundle of exterior

differential forms of bi-degree (0, i) and Ai be the Cauchy-Riemann operator ∂i for the exterior

differential forms. Choosing coordinates z = (z1, ..., zn) with zj = xj +
√
−1xj+n, j = 1, ..., n,

and x = (x1, ..., x2n) ∈ R2n we have for a form u ∈ C∞(Cn,Λ(0,i)):

u =
∑
|I|=i

uI(z) dzI , ∂iu =
n∑
j=1

∑
|I|=i

∂uI
∂zj

(z) dzj ∧ dzI ,

where ∂
∂zj

= 1
2

(
∂
∂xj

+
√
−1 ∂

∂xj+n

)
, dzj = dxj+

√
−1dxj+n, I = (j1, . . . , ji), dzI = dzj1∧· · ·∧dzji .

It is well known that ?u = ∗u for a form u with ∗ being the Hodge operator for the differential

forms (see [37, §14]). Then ∆i = 1/2 ∆Ik(i), where ∆ is the usual Laplace operator in R2n and

Ik(i) is the unit k(i)×k(i)-matrix. If Φi = Ik(i) Φ, where Φ is the standard fundamental solution

to ∆ of the convolution type, then Mi is the Martinelli-Bochner-Koppelmann integral and (16)

is the the Martinelli-Bochner-Koppelmann integral formula (see, for instance, [38] or [15]).

Let D be a part of the unit ball Ω cut off by a hypersurface Γ 63 0. Then Carleman kernel

in formulae (35), (36) has the following form (see [21]):

CN(ζ, z) = ?ζ∂ζΦi(ζ, z)−
∑
|I|=i

N∑
µ=0

J(µ,2n)∑
j=1

?ζ∂ζ

(
h

(j)
µ (ζ) dζI

|ζ|2n+2µ−2(2n+ 2µ− 2)

)
h(j)
µ (z) dzI

where {h(j)
µ } is the system of the spherical harmonics (see Example 6.1).

A result similar to Corollary 6.1 was obtained in [18, Theorem 3.1] for the Dolbeault complex

if ∂D \ Γ is i-strictly pseudo concave hypersurface; however they had no aim to prove that the

tangential part of the rest ∂ih vanished on Γ.
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