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Abstract

Let D be a bounded domain in R", n > 2, with a smooth boundary dD. We indicate
appropriate Sobolev spaces of negative smoothness to study the non-homogeneous Cauchy
problem for an elliptic differential complex {A;} of first order operators. In particular,
we describe traces on 0D of tangential part 7;(u) and normal part v;(u) of a (vector)-
function v from the corresponding Sobolev space and give an adequate formulation of
the problem. If the Laplacians of the complex satisfy the uniqueness condition in the
small then we obtain necessary and sufficient solvability conditions of the problem and
produce formulae for its exact and approximate solutions. For the Cauchy problem in the
Lebesgue space L2(D) we construct the approximate and exact solutions to the Cauchy
problem with the maximal possible regularity. Moreover, using Hilbert space methods, we
construct Carleman’s formulae for a (vector-) function u from the Sobolev space H!(D)
by its Cauchy data 7;(u) on a subset I' C 9D and the values of A;u in D modulo the
null-space of the Cauchy problem. Some instructive examples for elliptic complexes of
operators with constant coefficients are considered.

Key words: Elliptic differential complexes, ill-posed Cauchy problem, Carleman’s formula.

It is well known that the Cauchy problem for an elliptic system A is ill-posed (see, for
instance, [1]). Apparently, the serious investigation of the problem was stimulated by practical
needs. Namely, it naturally appears in applications: in hydrodynamics (as the Cauchy problem
for holomorphic functions), in geophysics (as the Cauchy problem for the Laplace operator), in
elasticity theory (as the Cauchy problem for the Lamé system) etc., see, for instance, the book
[2] and its bibliography. The problem was actively studied through the XX century (see, for
instance, [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] and many others).

Differential complexes appear as compatibility conditions for overdetermined operators (see,
for instance, [14], [15]). Thus, the Cauchy problem for them is of the special interest. One of the
first problems of this kind was the Cauchy problem for the Dolbeault complex (the compatibility
complex for the multidimensional Cauchy-Riemann system), see [16]. The interest to it was
great because of the famous example by H. Lewy of the differential equation without solutions,
constructed with the use of the tangential Cauchy-Riemann operator, see [17]. Recently new
approaches to the problem were found in spaces of smooth functions (see [18], [19]) and in
spaces of distributions (see [20], [21]).

We consider the Cauchy problem in spaces of distributions with some restrictions on growth
in order to correctly define its traces on boundaries of domains (see, for instance, [2], [22], [23],
[24], [25],). In this paper we develop the approach presented in [9] to study the homogeneous
Cauchy problem for overdetermined elliptic partial differential operators. Instead we consider
the non-homogeneous Cauchy problem for elliptic complexes.

!The investigations were supported by DAAD and by RFBR grant 11-01-00852a.



1 Preliminaries

1.1 Differential complexes

Let X be a C*°-manifold of dimension n > 2 with a smooth boundary 0.X. We tacitly assume
that it is enclosed into a smooth closed manifold X of the same dimension.

For any smooth C-vector bundles £ and F' over X, we write Diff,,,(X; E — F) for the space
of all the linear partial differential operators of order < m between sections of E and F'. Then,
for an open set O C X (here X is the interior of X ) over which the bundles and the manifold are
trivial, the sections over O may be interpreted as (vector-) functions and A € Dift,,,(X; E — F)
is given as (I x k)-matrix of scalar differential operators, i.e. we have

where a,(z) are (I x k)-matrices of C*°(O)-functions, k = rank(FE), | = rank(F).

Denote E* the conjugate bundle of E. Any Hermitian metric (.,.), on E gives rise to a
sesquilinear bundle isomorphism (the Hodge operator) xg: E — E* by the equality (xgv, u), =
(u,v), for all sections u and v of F; here (.,.), is the natural pairing in the fibers of E* and E.

Pick a volume form dx on X, thus identifying the dual and the conjugate bundles. For
A e Diff,,(X; E — F), denote by A* € Diff,,,(X; F' — F) the formal adjoint operator.

Let 7 : T*X — X be the (real) cotangent bundle of X and let 7*E be a induced bundle for
the bundle E (i.e. the fiber of 7*E over the point (z,z) € T*X coincides with E,). We write
o0(A) : mE — 7" F for the principal homogeneous symbol of the order m of the operator A.

Let D be a bounded domain (i.e. open connected set) in X with infinitely differentiable
boundary dD. Denote C*°(D, E) the Fréchet space of all the infinitely differentiable sections of
the bundle E over D and denote C*°(D, E) the subset in C*°(D, E) which consists of sections
with all the derivatives continuously extending up to D. Let also Cosmp(D, E) stand for the set
of all the smooth sections with compact supports in D. Besides, for an open (in the topology of
dD) subset I' C 9D, let C5, (DUT, E) be the set of all the C>(D, E)-sections with compact

supports in D UT".

For a distribution-section u € (C. (D, E))" we always understand Au in the sense of

comp
distributions in D. The spaces of all the weak solutions of the operator A in D we denote

Sa(D).

We often refer to the so-called uniqueness condition in the small on X for an operator A.

Condition 1.1. If u is a distribution in a domain D € X with Au = 0 D andu=0 on an
open subset O of D then u =0 in D.

It holds true if, for instance, all the objects under consideration are real analytic.
Let Ga(.,.) € Diff,,_1(X; (F*, E) — A" !) denote a Green operator attached to A, i.e. such
a bi-differential operator that

4G A(x2g,v) = ((Av, 9). — (v, A*g),) da for all g € C¥(X, F), v € C¥(X, E);



here AP is the bundle of the exterior differential forms of the degree 0 < p < n over X. The
Green operator always exists (see [15, Proposition 2.4.4]) and for the first order operator A it
may be locally written in the following form:

Ga(*xg,v) = g"(x) o(A)(z, (xdxy, ..., *dx,)) v(z) for all g € C°(X, F), v € C*(X, E).

Then it follows from Stokes formula that the (first) Green formula holds true:

/az) Ga(*xg,v) = /D((Av,g)x — (v,A%g),) dx for all g € C*(X, F), ve C°(X,E). (1)

Fix a defining function of the domain D, i.e. a real valued C'*°-smooth function p with
|[Vp| # 0 on 9D and such that D = {x € X : p(x) < 0}. Without loss of a generality we can
always choose the function p in such a way that |Vp| = 1 on a neighborhood of dD. Then

Ga(*g,v) = /6D(U(A)(SC, Vp) v,9), ds(z) for all g e C*(X, F), ve C*°(X,E), (2)

where ds is the volume form on 0D induced from X.
Our principal object to study will be a complex {A;, E;}, of partial differential operators
over X (see, [15], [14]),

0= C®(X, By 28 C®(X, ) B (X, By) — - 5" 0%(X, Ex) — 0, (3)

where E; are the bundles over X and A; € Diff;(X; E; — E;1) with A4 o A; = 0; we tacitly
assume that A; = 0 for both ¢ < 0 and ¢ > N. Obviously, 0(A;;1) o 0(A;) = 0. We say that
the complex {A;, E;}Y, is elliptic if the corresponding symbolic complex,

0— 7T*E0 U@)O) W*El U(—A)l) 7T*E2 — J(A—Nfl) 7T*EN — 0, (4)
is exact for all (z,z) € T*X \ {0}, i.e. the the range of the map o(A;) coincides with the kernel
of the map o(A;11). In particular, o(Ap) is injective away from the zero section of 7*X and
o(An_1) is surjective.

As any differential complex is homotopically equivalent to a first order complex, we will
consider elliptic complexes of first order operators only. Hence it follows that the Laplacians
A; = ATA; + A1 A, of the complex are elliptic differential operators of the second order and
types E; — F; on X for 0 <7 < N.

1.2 Sobolev spaces

We write L?(D, E) for the Hilbert space of all the measurable sections of E over D with a
scalar product (u,v)r2p.gy = [ (u,v).dz. We also denote H*(D, E) the Sobolev space of the
distribution sections of E over D, whose weak derivatives up to the order s € N belong to
L*(D,E). As usual, let Hi (D UT,E) be the set of sections in D belonging to H*(c, E) for
every measurable set ¢ in D with o C D UT.

Further, for non-integer positive s we define the Sobolev spaces H*(D, E) with the use of
the proper interpolation procedure (see, for example, [2, §1.4.11]). In the local situation we can
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use other (equivalent) approaches. For instance, if X C R and the bundle £ is trivial, we may
we denote H'/2(D, E) the closure of C*(D, E) functions with respect to the norm (see [26]):

lu(z) — u(y)|?dx dy
||u||H1/2(DE \/”UHLz(D Bt / |2n+1 :

Then, for s € N, let H*"'/2(D, E) be the space of functions from H*"'(D, E) such that the
weak derivatives of the order (s — 1) belong to H'/?(D, E).
The Sobolev spaces of negative smoothness are usually defined with the use of a proper

duality (see [27]). For instance, one can consider the Sobolev space H—*(D, E) as the completion

of the space Cy, (D, E) with respect to thenorm ~ sup W, s € N. Unfortunately,
VECSS, (D,E) N DE)

elements of these spaces may have "bad” behavior near 0D, but the study of the Cauchy

problem needs a correctly defined notion of a trace. This is the reason we use slightly different

spaces; we follow [22] (cf. [24], [2, Chapters 1, 9], [28]). More exactly, denote by C° (D, E)

the subspace in C*°(D, E) consisting of the sections with vanishing on D derivatives up to

order m — 1. Let s € N. For sections u € C*(D, E) we define two types of negative norms

|(u, U)L2(D,E)| |(u, U)LQ(DyE)|

Jull-s = sup , Juls = sup
veC>®(D,E) [v] Hs(D,E) veC | (D,E) [v] Hs(D,E)
It is more correct to write || - ||—s.p.g and |- |_s p g, but we prefer to omit the indexes D, E, if
it does not cause misunderstandings. It is convenient to set || - [lo.p = || - [|22(p,)-
Denote the completions of space C*®(D, E) with respect to these norms by H~*(D, E) and
H(D,E,|-|_s) respectively. It follows from the definition that the elements of these Banach

spaces are distributions of finite orders on D and these spaces could be called the Sobolev
spaces of negative smoothness. Clearly, they satisfy the following relations: H*(D, E) <
H(D,E,|-|_s) = H*(D, E), and, similarly, H*(D,E) — H—*"Y(D,E), H(D,E,| - |_,) —
H(D’ E, | ) |—s—1)‘

The Banach space H~*(D, E) can be identifyed with the dual space (H*(D, E))" of the
standard Hilbert space H*(D, E) (see, for instance, [2, Theorem 1.4.28]).

Clearly, any element u € H=*(D, E) extends up to an element U € H‘S()O(, E) via
(U, v))o( = (u,v)p for all v € Hs()%,E);

here (-, -)p is a pairing H x H' for a space H of distributions over D. It is natural to denote this
extension ypu because its support belongs to D. Obviously, this extension induces a bounded
linear operator

xp: H*(D,E) = H*(X,E), s€Z,. (5)

It is known that the differential operator A continuously maps H*(D, E) to H*~™(D, F),
m < s, s € N. The following lemma shows the specific way of the action of A for s < 0.

Lemma 1.1. A differential operator A induces linear bounded operator A : H *(D,E) —
H(D7F7|' |—S—m>7 s €Ly



Proof. Immediately follows from (1) and (2). O
However there is no need for elements of H=*(D, F) to have a trace on 0D and there is no
need for A to map H*(D, E) to H*"™(D, F).

2 Traces of Sobolev functions of negative smoothness

By the discussion above we need to introduce some other spaces in order to define the traces
on 0D. In general, our approach is closed to the one described in [2, §9.2, 9.3].

2.1 Strong traces on the boundary

It is well known that if 0D is sufficiently smooth then the functions from the Sobolev space
H*(D), s € N, have traces on the boundary in the Sobolev space H*"'/2(9D) and the cor-
responding trace operator t, : H*(D) — H*'/2(9D) is bounded and it admits the bounded
right inverse operator (see, for instance, [26]). In particular, this means that for every u €
H; (DUT, E), s € N, there is the trace tr g(u) on I' belonging to Hfocl/Q(F E).

In order to define the so-called strong traces on 9D for elements of Sobolev spaces with
negative smoothness we denote H, *(D, E) the completion of C=(D, E) with respect to the
graph-norm:

1/2
lll—oi = (Il + ull? o1 n0m) "

Thus the operator t, induces the bounded linear trace operator
t_op:H*(D E)— H*Y?0D,E).

Remark 2.1. The spaces H*(D, E), H; (D, E), H(D,E,| - |_s) are well known. Let A be
a first order operator with injective principal symbol. Given distributions w and ug, consider
the Dirichlet problem for strongly elliptic formally self-adjoint second order operator A*A. It
consists in finding a distribution u satisfying

A*Au = w in D, (6)
t(u) = wug on OD.

It follows from [22, theorems 2.1 and 2.2] (see also [24], [28] for systems of equations) that the
Uniqueness Theorem and the Existence Theorem are valid for problem (6) on the Sobolev scale
H*(D,E), s € Z for data w € H(D, E,| - |,_2) and ug € H*~'/2(0D, E). Denote by P") the
operator mapping ug and w = 0 to the unique solution to the Dirichlet problem (6). Similarly,
denote GP) the operator mapping w to the unique solution to the Dirichlet problem (6) with
zero boundary Dirichlet data. Clearly, QXEA is the famous Green function of the Dirichlet
problem (6) and 771(413}1 is the Poisson integral corresponding to the problem. The standard
theorem of improving the smoothness of the Dirichlet problem (see, for instance, [26] or [2,
Theorem 9.3.17]) and [28, Theorem 2.26 and Corollary 2.31] imply that the operators Pi@h
92131)4 act continuously on the following Sobolev scale:

Py H VX OD,E) — H(D,E), G2, . H(D,E,|-|,-2) — H*(D,E), seN,
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P V20D, E) —» H7*(D,E), G2 :H(D,E,||-ss) = H*(D,E), s€Z,.

They completely describe the solutions of the Dirichlet problem on the scale of the Sobolev
spaces. Ul

However we need a more subtle characteristic of the traces to study the Cauchy problem
for the differential complex {A;}.

For a section u of E over D and a first order operator A, let 74(u) = o(A)(x, Vp(z))u
represent the Cauchy data of u with respect to A (see, for instance, [15, §3.2.2]). Similarly, let
va(f) = Ta=(f) represent the Cauchy data of f with respect to A* for a section f of F. Then
the maps 7,  induces a bounded linear operators

Fas: H'(D,E) — H*V*(OD,F), a,:H*(D,F)— H*"Y*0D,E), scN. (7)

Denote the completions of the space C=(D, E) with respect to graph-norms

1/2 - 1/2
lull—s.a = (el +1[AulZ 1) 7 Nlull—sza = (lull2s + 17a@)12 -1 )200)

by H,*(D,E) and H_°(D, E) respectively. Clearly, the elements of these spaces are more
regular in D than the elements of H~*(D, E). Moreover, by the very definition, the differential
operator A induces a bounded linear operator

A :H*D,E)— H*(D,F),
and the trace operator (7) induces a bounded linear operator
Fas: H; (D, E) — H*"Y2(0D, F).

Theorem 2.1. The linear spaces H,*(D, E) and H:’(D,E) coincide and their norms are
equivalent. Moreover, if A has the injective principal symbol then the spaces H-*(D, E) and
H;*(D, E) coincide and their norms are equivalent.

Proof. It follows from the definition of the spaces that we need to check the relations

between the norms on the sections from C>(D, E) only. By Green’s formula (1) and (2) we
have for all u € C®(D, E):

ul®s 4 < (U4 IATA P + e p ) Qlull, + 1Fa@IZ 1 2.00).

where A%, | : H*"(D, F) — H*(D, F) is the linear bounded operator induced by the differential
operator A*.

Back, fix a section gy € C*(0D,F). Now let Vp € Diffy(X;F — F ® (T*X).) be a
connections in the bundle F' compatible with the corresponding Hermitian metric (see [29, Ch.
III, Proposition 1.11]). Obviously V has the injective symbol. Then, using remark 2.1 we see
that there is a section g € C*°(D, F) with g = go on D and ||g||s+1 < ||go|s+1/2. For instance
we may take g = ’P(V[;)VF go. Therefore Green’s formula (1) and formula (2) imply that for all
u € C(D, E) we have:

/8 (Falu).g0ds(a) = / ((Au, g)s — (u, A*g),)dz.

D
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Hence
Jull> s + 7A@ 1 jpop < T+ NALN + ) (Jul?, + JAu]? ),

i.e. the spaces H,*(D, F) and H;’(D, E) coincide and their norms are equivalent.
Finally, if the symbol o(A) is injective then the map o*(A)(x, Vp(z))o(A)(z, Vp(z)) is
invertible on 0D and

a(u) = o(A) (@, Vp(@)t(w), t(u) = (0"(A)(z, Vp(x))o(A)(z, V()" Pa(Fa(u)),

which means that the norms || - || s and || - | _s, are equivalent on C=(D, E). O

Now for the complex {A;} denote 7; the Cauchy data with respect to A;. Similarly de-
note 7; the Cauchy data with respect to A7 ;. As the complex is elliptic then the matrix
L(z) = o*(A;)(z,Vp(x))o(A;)(z, Vp(x)) + o(A;i_1)(x, Vp(x))o*(A;i—1)(x, Vp(z)) is invertible
in a neighborhood of dD. Then we set

-1 ~ ~ -1 ~ ~
7, =L ()07, vi=L (x)Ti_100;.
Lemma 2.1. The following identities hold true:
7-i+lo7~—i :0, 171'_1051' :O, 7~'i01/i :0, IJI'OTZ‘ :0, 7~—z :%iOTZ', ﬂz :ﬁiOVZ‘,

TioT =T, Viov;=v;, ;01 =0, ;071 =0, 7+, =1,

i}

* * ~ % ~ ~ %
T, =T, Vg = Vi, T, = Vi1, Vy = Ti—1.

Proof. See, for instance, [15, formulae (3.2.3)]. O
Because of Lemma 2.1, the projections 7;(u) and v;(u) are often called the tangential and

the normal parts of a section u with respect to the complex {A;} respectively.
Due to Lemma 2.1 we have for all u € C®(D, E;), g € C*®°(D, E;1,):

| . 5uato))s dste) = [ (Awg). = (. Az ®)

D
Denote the completion of the space C*°(D, E;) (0 <14 < N) with respect to graph-norms

)1/2 1/2

ull—s.r = (lull2e + 17 (@21 p00) " Mull-sw, = (el + V() 1221200)
by H-*(D, E;) and H, *(D, E;) respectively.

Corollary 2.1. Let the differential complex { A;} be elliptic. Then the linear spaces H,*(D, Ej),
H:*(D, E;) and H_*(D, E;) coincide and their norms are equivalent.

Proof. The equivalence of the norms || - ||_s 4, and || - ||_s 7 follows Theorem 2.1. Finally,
as the complex {4;} is elliptic then Lemma 2.1 implies the equivalence of the norms || - || s
and || - [ -5, O

Corollary 2.2. Let the complex {A;} be elliptic. Then linear spaces 7 (D, E)), H;®°(D, E;)

1

and H,*(D, E;) coincide and their norms are equivalent.



Proof. As the complex {A;} is elliptic then the complex {A} is elliptic too. That is why
Corollary 2.1 implies the desired statement. Il

Corollary 2.3. If the complex {A;} is elliptic then the linear spaces HZ‘f@A*_l(D,Ei) and

H.;*(D, E;) coincide and their norms are equivalent.

Proof. As the complex {A4;} is elliptic then the operator A;® Af_; has the injective principal
symbol. Hence the statement follows from Theorem 2.1. O

Corollary 2.4. If the complex {A;} is elliptic then the following identities hold true:

HZiSEBA* (D, Ez) = HEZS(D, El) N H;;_I(D, Ez),

1—1

Htis<D7 Ez) = H;ZS(D7 E’L) A HIZS<D7 EZ)

2.2 Weak boundary values of the tangential and normal parts

Consider now the weak extension of an operator A on the scale H*(D, E). Namely, denote
Hj (D, E) the set of the sections u from H~*(D, E) such that there is a section f € H=*(D, F)
satisfying Au = f in H*(D, F,| - |-s—1) (in particular, in the sense of distributions in D). As
the operator A is linear, this set is linear too. Clearly,

H*(D,E) C H (D, E). (9)

It is natural to expect that these spaces coincide (cf. [30]); we will prove it later.

According to Corollary 2.1, we have 7;(u) € H=*~Y/2(9D, E;) for all sections u € H;*(D, E;).
Let us clarify the situation with the traces of the elements from H,* (D, E;) for an operator
A; from an elliptic complex.

To this end, define pairing (u,v) for v € H™*(D,E), v € C®(D, E) as follows. By the
definition, one can find such a sequence {u,} in C*°(D, E) that ||u, — u||_s — 0 if v — oco.
Then

1ty =t 0) 20,5 < [ty = wull-allolli oy = 0 s pr,v = oo,

v

Set (u,v) = lim (u,,v)r2(p,py- It is clear that the limit does not depend on the choice of the
— 00

sequence {u, }, for if ||Ju, ||y = 0, v = oo, then |(u,, v)r2(p,p)| < ||uw||=s||v||#s(p,p) tends to zero
too. This implies that for u € H=*(D, E) and v € C*(D, E) we have the inequality: |(u,v)| <
lul|=s||vl| s (p,B)- Set H(D, E) = U2 H™*(D, E). Easily, the pairing (u, v)p is correctly defined
for u € H(D,E) and v € C*(D, E). The unions U2, H (D, E) and U2, H %, (D, E) we
denote by H(D, E) and H4(D, E) respectively.

As before, let I' be an open (in the topology of dD) connected subset of dD. The following
definition is induced by (8).

Definition 2.1. Let alone the correctness of this definition, we say that a distribution-section
u € Hy, (D, E;), satisfying Aju = f in D with f € H(D, E;y1), has a weak boundary value
75 (u) = 7i(ug) on ' for ug € D'(T', E;) if

(f,9)p — (u, Ajg)p = (%Vit1(g), 7i(uo))r for all g € Cs;)mp(D UL, Eifq).



Formulae (1), (2) and Theorem 2.1 imply that any section u € H,*(D, E;) has a weak
boundary value of the tangential part = aD( ) on 9D coinciding with the trace 7; _s(u) €
H=712(0D, E;). We are to connect the weak boundary values of the tangential parts with the
so-called limit boundary values of the solutions of finite orders of growth near 0D to elliptic
systems (see [23], [24], [2]). Recall that a solution u € S4(D) of an elliptic system A has a
finite order of growth near 9D if for any point 2 € D there are a ball B(z°, R) and constants
¢ > 0, v > 0 such that

lv(z)| < ¢ dist(z,0D)™" for all z € B(2°, R) N D.

As 0D is compact, the constants ¢ and v may be chosen in such a way that this estimate is
valid for all 2° € @D. The space of all the solutions to A of finite order of growth near 9D will
be denoted S4 (D).

Further, set D. = {z € D : p(z) < —e}. Then, for sufficiently small ¢ > 0, the sets D. &€
D € D_. are domains with smooth boundaries 0D, of class C*°. Besides, the vectors Fev(z)
belong to 0D, for every x € D (here v(x) is the external normal unit vector to the hyper-
surface 0D at the point x). According to [2, Theorem 9.4.7], [24], if A is elliptic and it
satisﬁes the Uniqueness Condition 1.1 then any solution w € S%. ,(D) had the weak limit value

e (I'E)) on T, ie.

comp

<w” v >= lim v(y)w(y —ev(y))ds(y) for all v € C5 (T, E).
e—=+0 Jop

Theorem 2.2. Let A; be an elliptic complex such that the operators A; & Af ;, 0 < i <
N, satisfy the Uniqueness Condition 1.1. Then every section u € HAi’w(D,EZ) has the weak
boundary value 7% (u) € H=*"Y%(OD, E;) in the sense of Deﬁm’tion 2.1, coinciding with the
limit boundary value 7;(w) of the solution w = (u — Q(A A*f A Q (D,—stl) A* ) from
SX,(D); besides, 7% (u) does not depend on the choice of f € H™~ 1(D,El+1) with Aju = f
in D.

Proof. First of all we note that Lemma 1.1, Theorem 2.1 and Remark 2.1, imply that
the operator QAD Ay continuously maps H?~'(D, E;;,) to HY (D, E;). Hence the sections

— g(A VA f € Hy *(D, E;) and wy = Q(D A € HASJEI(D FE; 1) have the zero
traces t_g(wy) and t_8+1(w2) on 0D. In partlcular, Ti—s(w1) = 0, 7,1 _s41(wy) = 0, and
therefore 7%, (w1) = 0, 72, 5p(w2) = 0. Besides, as A; 0 A;_; = 0, we see that A;(A4; jw;) =0
in D and A; ywy € Hy? (D, E;). According to Definition 2.1, applied to wa, we have:

(0,9)p — (Aimqwa, Afv)p = — (1 (Afv), Tim1 (w2))r + (we, A7_1AJv)p =0

for all v € Cg,,,(DUT, Ejy1). Therefore 7;%,(Ai—1w2) = 0 too.

comp
It is clear now that the section u € H,* (D, E;) has the weak boundary value of 7% (u) in

the sense of Definition 2.1 if and only if the section w = (u — Q(A A*f A 1g D, SH A* L)
has. By the construction w € H* (D, E;) satisfies

Aw = (ATA, + A A Du— Al f — Ai1(Af_ju) =01in D.



In particular, this section belongs to C*°(D, E;), it has a finite order of growth near 9D (see [28,
Theorem 2.32]), and hence it has the limit boundary value w® € (C2 (9D, E;))" on 0D (see

comp

[2, Theorem 9.4.8]). Of course, the section 7;(w®) € (C (9D, E;)) is also defined because

comp
the function p is of class C*. Clearly, 7;(w) = 7;(w") in the sense of the limit boundary values

on dD.
As we have already noted, w € H}’ (D, E;) and Aw = f — Aig(A?’_S)A:-‘f in D where
(f — Aig(Al?’fs)A;‘f) € H* YD, E;y1). In particular, this means that

(xpw,v) = (w,v)p for all v € C’OO()O(,EZ-),

On(f = AGL ™A f), g) = (f = AGL AL fLg)p for all g € (X, Eipy).

Since the both w and A;w are solutions to elliptic operators, i.e. Ajw = 0in D, A1 (Aw) =
0 in D and they both have finite orders of growth near 0D, then it follows from [2, the proof
of Theorem 9.4.7] that there is a sequence of positive numbers {¢,}, tending to zero and such
that

(xpw,v) = lim (w,v)dx for all v € C’OO()%, E;),
ev—=+0 Jp

v

(xp(f — AGL ™Az f),g) = lim (Ajw, g)oda for all g € C(X, Eiyy).

ev—+0 D.
1%

By Whitney’s Theorem, every smooth section over D may be extended up to a smooth section
over X. Therefore

(w,v)p = lim (w,v),dx for all v € C*(D, E;),
e, —+0 D.,

(f = AGL " Aif.9)p = lim [ (A, g)ede for all g € C*(D, Eup).
v Ev—> D.,
As n(gﬁf"s)A;‘f + Ai,lggjsﬂ)A;‘u) = 0 on 0D in the sense of Definition 2.1, we see that
Lemma 2.1, formulae (1) and (8) imply for all g € C*®(D, E;;):

(f,9)p — (u, Aig)p = (f — AGL ™AL f, 9)p — (w, Afg)p =

L (/D ((Aw, g)s — (w,Ajg)x)dx> _

ev

Eli_{r}ro (Ti(w), Dis1(9))e ds(x) = (*Pig1(g), 7:(w°))ap,
v aD.,

ie. 74p5(u) = 7;(w) on dD. Now, if f € H*"}(D, E;_) satisfies Au = f in D then & =
(u— Q(A[Z’fs)Aff— Ai,lg(ADijsH)Af_lu) and we have: (w—w) = Q(A?’fs)Aj(f - fe H,*(D, E;)
with 7% p(w — @) = 0 on 9D, i.e. the weak boundary value 7;%(u) does not depend on the
choice of the section f € H*71(D, E;,) satisfying A;u = f in D.

Finally, we are to prove that the weak boundary value belongs to the corresponding Sobolev
space H=*"'/2(9D, E;). With this aim, fix a section vy € C*°(0D, E;,1). Then the section

10



g = pw

E +1VE¢+1

Fi(vo) (see the proof of Theorem 2.1) belongs to C*°(D, E;;;) and coincides

with 7;(vg) on 0D. Moreover, according to Remark 2.1 we have:

HQHHS“(D,Em) < 7l7i(vo)| Hs+1/2(8D,E; 1) < 2l|vo] Hs+1/2(8D,E;) (10)

with a positive constants 7;, v, which does not depend on ¢ and vy. Hence, by Definition 2.1
and Lemma 2.1, we obtain:

|(Tip (1), vo)an| = [(7i1(Ti(v0)), Tion (w))on| = [(*Vit1(9), Tiop (w))on| =

1(f,9)p = (v, A7) | < [fl=s=1llgll 1D, iy0) + llull-s][ A7 g]
As the map A} : H*™(D, E;,) — H*(D, E;) is bounded, then the estimate implies that (10)

Hs(D,E;)-

|(Ti%p (w), vo)| < A(llull—s + [ fll=s-)llvoll ge+12(0m,5:.1)

with a positive constant 4 which does not depend on vy and uy.
Hence,

|(Tp (1), v)an|

7o (Wl a-s-120p,2) = sup <Al =s + 1 £l =s=1)-
VE€CES,,, (0D, E;) Hs+1/2(8D,E;)

Thus, the section 7%, (u) belongs to the space H—*~'/2(9D, E;), which was to be proved. [
Corollary 2.5. The spaces H,*(D, E;) and H;® (D, E;) coincide.

Proof. Since (9), it is enough to prove that H,’ (D, E;) C H,*(D, E;). Fix a section
u € H,’ (D, E;). Proving Theorem 2.2 we have seen that there is w c SK,(D)NH™*(D, E;),
satisfying

w=w+ G A+ A G VAL

According to Remark 2.1, the section w is presented via its boundary values on 9D by the
Poisson type integral w = P(A[;’_s)ti(w). Hence w € H;*(D, E;). Besides, Remark 2.1 imply
that w; = Q(ADZ_’_S)A;‘f belongs to H, *(D, E;) too. Thus, it follows from Corollary 2.3 that the
sections w and wy belong Hy % 4. (D, E;) € Hy (D, E;).

Take a sequence {u,} C C=(D, E;) approximating u in the space H~*(D, E;). It follows
from Remark 2.1 and 1.1 that the sequence {A;_ 1QA[; 18+1 Ar ju,} € C®(D, E;) converges
to A;_ 1g . S+1 JA*_u in the space H=*(D, E;). Moreover, {A;(4;_ 1Q . s+1 JAr ju,) =0} C

C>(D, E) converges to zero in the space H *7'(D, E;;1). Therefore AZ 1(j . SH JA*_u be-
longs to H (D E;). That is why the section u belongs to this space too. Il

Corollary 2.6. The differential operator A; continuously maps H,*(D, E;) to HE:I(D, Eiq).

Similarly defining the spaces H,fol,w(Din) and H,° Agl,w(Din) we easily obtain the
following statements.

Corollary 2.7. The spaces H,: (D, E;) and H,? (D, E;) coincide.

11



Corollary 2.8. The spaces H/_lf@Ail(D7 E;) and H;,S@Atl’w(D, E;) coincide.

As we have seen above, the scale {H,*(D, E;)} is suitable for stating the Cauchy problem
for the elliptic first order complex {A;}. In order to do this we need to choose a proper spaces
for the boundary Cauchy data on a surface I' C D. As we are interesting in the case I' # 0D,
we will use one more type of the Sobolev spaces: the Sobolev spaces on closed sets (see, for
instance, [2, §1.1.3]). Namely, let H~*~'/2(T, E;) stand for the factor space of H=*"'/2(0D, E;)
over the subspace of functions vanishing on a neighborhood of T'. Of course, it is not so easy to
handle this space, but its every element extends from I' up to an element of H=*~Y2(0D, E;).
Further characteristic of this space may be found in [2, Lemma 12.3.2]). We only note that if
I' has C*°-smooth boundary (on 0D), then

H"YT,E) — H*Y*T,E) — H T, E).
Corollary 2.9. For every section u € H,*(D, E;) and every I' C 0D there is the boundary
value 7;r(u) in the sense of Definition 2.1, belonging to H—*"Y/*(T, E).
As 0D is compact, U2, H=*"Y2(0D, E;) = D'(OD, E;). Set UX H—*"V(T', E;) = D'(T, E).
Now Corollary 2.5 immediately implies the following statements.

Corollary 2.10. For every u € Hyu, (D, E;) and every I' C 0D there is the boundary value
Tir(u) in the sense of Definition 2.1, belonging to D'(T, E;).

3 A homotopy formula

In this section we will obtain an integral formula for elements of the Soblev spaces with non-
negative smoothness. Of course, for sufficiently smooth sections such formulae are well known
(see, for instance, [15, §2.4]).

From now on we additionally assume that the operators A;, 0 < i < N, satisfy the Unique-
ness Condition 1.1. Then each of these operators has a bilateral pseudo-differential fundamental

solution, say, ®;, on X (see, for example, [2, §4.4.2]). Schwartz kernel of the operator ®; is
denoted by ®;(z,y), x # y. It is known, that ®;(z,y) € C*((E; @ Ef) \ {x = y}) (see, for
instance, [15, §5]).

For a section f € C*°(D, E;;1) we denote by T} f the following volume potential:

T1(0) = (@Aixof)(e) = [ (AD]D:(o.). Py
If 9D is smooth enough (e.g. 9D € C*) then the potential T; induces a bounded linear operator
T,: H YD, Ei;,) — H*(D, E;), seN
(see, for example, [31, 1.2.3.5]).

Lemma 3.1. For any domain () X with 00) € C* the potential T; induces a bounded linear

operator
Tio:H (D, Ei11) — Hgf“(Q,Ei), s € N.

Moreover for every section f € H=*(D, E;1) it is true that A;Tiof = Axpf in Q\ D.

12



Proof. First of all we note that any smoothing operator K of type E;.1; — E; on X induces
for any p a bounded linear operator

KXD : H_S(D,EZ‘_H) — Cp(ﬁ, Ez)

As any two fundamental solutions differ on a smoothing operator, we may assume that ¢, =
Q(A)f). The principal advantage of Q(A)f) is in the fact that the volume potential is L*(X, E;)-self-
adjoint (see, for instance, [28, formula (2.75)]). Besides, it has the transmission property (see
[31, §2.2.2]) and hence it continuously acts on the Sobolev scale:

G\ YD, E) — HY QL B, G Aixp : H YD, Eiypy) — HY(Q,Ei), seN.

In particular, Q(A)f)xgv belongs to Hfoc()%, E)NC=(Q, E;) for all v € C=(Q, E;) and, similarly,
Q(A)j)A;*XQg belongs to H}OC()O(,Ei) N C>®(Q, E;) for all g € C®(Q, E;;1). Then for all f €

C>®(D, Ei1), v € C®(Q, E;), g € C®(Q, E;;) we have:
(Tif v)a = (G Arxnf, xav)x = (xpf, AiGS) xav)x,

(AT f, 9)a = (AGSY Aixnf, xag)x = (Xpf, AGS Afxag)x.

Therefore, we have
HTifH—s,Ai,Q < (i Hf“—s—l,D for all f € COO(E> Eit1), (11)

JAT; fll—s—1,4,0 < Cao || fll—s—1,p for all f € C®(D, Ej14), (12)

with positive constants C}, Cy do not depending on f.
Let now f € H—*"'(D, E™). Then there is a sequence {f,} C C>®(D, E;;1) converging to
fin H*Y(D, E; ). According to (11), (12) the sequence {T;f,} is fundamental in the space
H,* (82, E;); its limit we denote T o f. It is easy to understand that this limit does not depend
on the choice of the sequence { f,} converging to f, and the estimates (11), (12) guarantee that
the operator T; o, defined in this way, is bounded. Moreover, the properties of the fundamental

solutions ®; means that each of the potentials T} f, satisfies
(Tifu, Aw)a = 2{Aixp fo, v) = (XD Sy, Aiv)q for all v € CF,

comp

(Q\ D, E).

Passing to the limit with respect to ¥ — oo in the last equality we obtain the desired statement
because the operators xp and T; o are continuous. O
Further, for a section v € C*°(D, E;) we denote by K;f the following volume potential:

K= (9;A;i-1 — Ai1®;-1) A7 xpv.

Again, by the definition, it is a zero order pseudo-differential operator with the transmission
property. If 0D is smooth enough (e.g. 9D € C*) then the potential K; induces a bounded
linear operator

K;: H*(D,E;) - H*(D, E;), s €Ly

(see, for example, [31, 1.2.3.5]).
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Lemma 3.2. For any domain Q2 € X with 02 € C™ the operator K; induces a smoothing
operator on Q. In particular, for all s € N, p € N, it is bounded linear operator

Kio:H*(D,E;) = C*(Q, E;) N Sa,(9Q).
Proof. Indeed, by the definition of the fundamental solution,

Az(q)zAz—l — Ai—lq)i—1>v = Ai_ﬂ) — Ai_ﬂ) =0 forallv e c ()O(, Ei—l)-

comp

Therefore the pseudo-differential operator (®;4;_1 — A;—1P;_1) (of order (—1) on X) is smooth-

ing on compact subsets of X. Now the similar statements follows for K;. O
For x ¢ 0D we denote M;vy(z) the following Green integral with a density vy € C*°(9D, E;):

Mivo(z) = — [ Ga, (A%~ ®y(x,-),v9) = —/ (Ti(v0), i1 (As %7 @i(w, ), ds(y), « & OD;
oD oD
(13)
the last identity easily follows from (8). Thus we define the Green transform with a density vy €
D'(0D, E;) as the result of the action of the distribution vy on the ”test-function” (—;(A; x~*
CI)Z(ZL', )) S COO(@D7 Ez)

Mvg(x) = —(vo, i (A x 1 @i, -))ap = —(Ti(v0), Tir1 (A x 7 @i(z,))ap, r ¢ 0D.

By the construction, M;vy € Sa, ()% \ supp vg, F;) as a parameter dependent distribution; here
supp vg is the support of vy.
Again, if 9D is smooth enough (e.g. D € C) then the potential M; induces a bounded
linear operator
M;: HY2(0D, E;) — H*(D,E;), s€N

(see, for example, [31, 1.2.3.5]).
Now using Stokes formula and the potentials T;, M;, K; we arrive to a homotopy formula
for the complex {A;} and sections u € C*®(D, E;) (see [15, Theorem 2.4.8)):

Of course, the continuity of the operators T;, M;, K; on the Sobolev spaces implies that formula
(14) is still valid for all the sections u € H*(D, E;), s € N. We are to extend the homotopy
formula for the complex {A;} on the scale H,*(D, E;), s € Z.

Lemma 3.3. For any domain ) € X such that 90 € C™ and D C Q the potential M induces
bounded linear operators

M;p: H*"V2(0D,E;) = H,*(D,E;), M;q: H "D, E;) — H*(Q, E).

Proof. As we already have seen above (see Remark 2.1 and Corollary 2.3), for every section
v* € H=*"Y/2(0D, E;) the Poisson integral P(A?)UO € Hypae (D, Ep) satisfies ti(P(A[:)’UO) =Y.
Set -
Mip = (I —TipA — AiTip — Kip) PY - H7Y2(0D, E;) — H*(D, Ey),

i
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M;o=(xp—TioAi — Ai-iTiqa — Kiq) P(AL,?) : Hisfl/Q@D, E;)) = H(Q, E;).

It follows from Lemmas 3.1, 3.2 and the continuity of the operators P(A?) and yp that the
defined above operators M; p, M, o are bounded. Let us see that M; p and M, o coincide with
M; on C™(dD, E;). Indeed, if 1° € C*(dD, E;) then Remark 2.1 implies P2v? € C=(D, E;)
and

M;v® —MP(D) 0 MTZ('PA U)

Now using a homotopy formula (14) we obtain:
XoPL 0 = Ma® + T p AP + A T p PO + KPP,

Since C=(AD, E;) is dense in H=*"'/2(9D, E;) then M; continuously extends from C*(dD, E;)
onto H=5~Y 2(8D, E;) as defined above operators M; p, M, . Moreover, it is easy to understand
that the sections M; pv°, M; qv° are coincide with the distributions Mv® on D and € \ supp v°
respectively. O

Theorem 3.1. For every section u € Ha,(D, E;) the following formulae hold:
M; pu + Tz‘,DAz‘U + Az‘—lTi—l,Du + K@Du = u, (15)
M;ou + T oA+ A1 Ti—1 ou + K ou = xpu. (16)

Proof. Pick u € Ha, (D, E;). Then u € H,*(D, E;) with a number s € Z, and there is
{u,} C C=(D, E;) converging to u in the space H °(D, E;). Now the homotopy formula (14)
implies

M;u, + T; Aju, + A1 Tyu, + K;u, = xpu,. (17)
Passing to the limit in the spaces H,*(D, E;) and H—>(2, F;) with respect to v — oo in (17)
we obtain (15) and (16) respectively because of Lemmas 3.1, 3.2, 3.3. O

Remark 3.1. Let f € H* YD, E;;). If Q, Q) are bounded domains in X (with smooth
boundaries) containing D then sections T; of € H*(Q, E;) and T q,f € H*(4, E;) belong
to Sa,(Q2\ D) and Sa, (9 \ D) respectively. Since they are constructed as the limits of the
same sequence of sections converging in different spaces, they coincide in (Q; N Q) \ D. The
same conclusion is obviously valid for the smoothing operators K; o and K o,. Moreover, as the
operators M; o and M, o, are constructed with the use of T} o, K; o and T} o,, K, o, respectively,

this is also true for the sections of the type M; o (v°) with v° € H*~Y/2(dD, E;). Since Q2 C X is
arbitrary, the Uniqueness Condition 1.1 allows us to say about the sections 7} f and M;v° from

SK, (X \ D) such that T;f = Tjof € H*(Q, E;), Ma° = M; gv° € H=%(Q, E;) for any domain
Q> D. O

4 The Cauchy problem in spaces of distributions

Problem 4.1. Given ug € D'(T',E;), f € Hx
that

(D, Eitq) find a section w € Hya,(D, E;) such

Aju = fin D, 7i(u) = 1i(ug) on T,
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in the sense of Definition 2.1, i.e.

<u7A;kg)D = (f7 g)D - <*Di+1<g)7 Ti(u0>>F fOT' all g€ Cco(?mp(D U F? EiJrl)' (18)

If ¢ = 0 then Ag has the injective principal symbol and the Cauchy problem has no more
than one solution (see, for instance, [2, Theorem 10.3.5]). Clearly it may have infinitely many
solutions if ¢+ > 0. Usually the Uniqueness Theorem of the Cauchy problem for ¢ > 0 is valid
in co-homologies under some convexity conditions on 0D \ I" (cf. [18, Corollary 3.2]). Instead
of looking for a version of Uniqueness Theorem we will try to choose a canonic solution of the
Cauchy problem (see §5 below for solutions in H} (D, E)).

We easily see that f and u° should be coherent. Namely, as A} A¥ ; =0, taking g = A}, w
with w € C2 (D UT, E;,5) in (18) we conclude that for the solvability of problem 4.1 it is

comp
necessary that

(f, Afﬂw)D = <*ﬁi+1(A;k+1w>7Ti(u0)>F for all w € C,

comp

(DUT, Eyys). (19)

Let us discuss this. First we note that, due to Corollary 2.6 and to the properties of
the complex, A;;1f = 0 in D if the Cauchy problem is solvable. This corresponds to w €
Cosmp(D, Eiy2) in (19).

Besides, the operator A; induces the tangential operator {4; ;} on 0D (see, for instance, [15,
§3.1.5]). More precisely, let u° € D'(0D, E;). Pick a section @ € Ha,(D, E;) satisfying 7;(4) =
7;(4%) on D (there is at least one such a section, P(A?)Ti(ﬂo)). Then set A, 4" = 741 (A;0).
If we fix g € C*°(0D, FE;y1) then, by Remark 2.1, the section w = P(A?izﬂﬂ(g) belongs to the
space C®(D, E;,5). Now, easily, Definition 2.1 and Lemma 2.1 imply that

(xg, Ai71%) = (<Diya(Tis1(9)), Tiv1 (Aith)) = (Tiya(w), Tiga (Ait)) =

(Astl, Afyyw)p = (5T (Afw), 7(0)) = (ki1 (Afw), 7(4%)). (20)
In particular, this means that A, 4" does not depend on the choice of 4@ € Ha,(D, E;) with
T,L(?AD = Ti(’LAL()) on 0D.

Lemma 4.1. For the Cauchy data ug and f, identity (19) holds if and only if Aix1f =0 in D
and i1 r(f) = Ai;u® on T.

Proof. Indeed, as we have noted above, (19) implies A;.;f = 0 in D. Then, similarly to
(20), it follows from Definition 2.1 that, with w = P(A?lﬁiﬂ(g),

(%g, Tix1(f)) = Wira(Tin1(9)), Tiv1 () = Kiga(w), Tig1 (f)) = (f, Afw)p

for all g € C®(0D, E;y1) if Aiyif = 0 in D. Therefore taking @° = u” on ' and g €
Cee (T, E;yq) in (20) we conclude that 7,11 r(f) = A;,u® on T too, if identity (19) holds.

comp

Back, if A;y1f =0 in D and 741 0(f) = A;,u” on T then , again applying Definition 2.1
and calculating as in (20), we obtain for all w € Cg;,,, (D UT, Ejys):
(f, Afw)p = (iga(w), T (f)) = Giga(w), Aipu”) = (kD1 (A7 w), 7i(u”)),
which was to be proved. Il
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It is important to note that Lemma 4.1 allows the point wise check of necessary solvability
conditions for Problem 4.1, at least if the Cauchy data f and u° are smooth.
Now choose a domain D™ in such a way that the set Q = DUT U D™ is a bounded domain

with smooth boundary in X. Tt is convenient to denote F* the restrictions of a section F onto
D* (here D~ = D).

Further, for u® € H=*Y2(T, E;), choose a representative @ € H—*"Y/2(9D, E;). We have
seen above the potentials M;uy and T;f satisfy A;(M;tg) = 0 and A;(T;f) = 0 everywhere
outside D as parameter dependent distributions. Hence the section

F, = M, ori(t) + Tiof

belongs to Sa, (D) N H(S, E;). The Green formula (16) shows that the potential F; contains
a lot of information on solvability conditions of Problem 4.1.

Denote xp(H (D, E;)) the image of the space H(D, E;) under the map xp : H(D, E;) —
H(, E;) (see map (5)).

Theorem 4.1. Let A; 1, A;, Ajiq satisfy the Uniqueness Condition 1.1. Then the Cauchy
Problem 4.1 is solvable if and only if condition (19) holds true and there is a section JF; €
H(Q, E;) such that A;AF; =0 in Q and (F; — F;) € xp(H(D, E;)).

Proof. Let Problem 4.1 be solvable and u be its solution. The necessity of condition (19)
is already proved. Set
Fiu = Miori(i°) + Tiof — xpu. (21)

Lemmas 3.1, 3.1, 3.3 and Remark 3.1 imply that F;,, € H*(Q2, E;) with some s € Z,. Clearly
(F; — Fi) = xpu € xp(H(D, E;)). Then it follows from homotopy formula (16) that:

fi,u = i,Q(Ti(fLO) - Tz(u))) - Ai—lTi—l,QU — Ku. (22)

Since (7;(@°) — 7;(v)) = 0 on T then M; o(7;(a°) — 7;(u)) belongs to Sa, (X \T') as a parameter
dependent distribution. That is why, using Lemma 3.1, we obtain:

AiFiuw=—0Ai T ou=—A; AT ou=—A;_1Aj_xpu in (). (23)

In particular, A;A;F;, =0 in Q.
Back, let there be sections F; € H(S2, E;) and v € H(D, E;) such that A;A;F; =0 in Q and

Xpu = F; — F;. (24)

Let us show that the section w is a solution to Problem 4.1. With this aim we consider the
following functional w(%°) on the space C>®(D, E;1):

(w(@®),v) = (1:(@°), iy 1(v))ap for all v € C=(D, Ei14).

As @° € D'(OD, E;) then @° € H~*"'/2(0D, E;) with some s € Z, and hence for all v €
C>®(D, E;,1) we have:

(w(@®), v)| < 17:(@)]|—s-1/2,0D |7i41(0) |1 /200 < C 17:(@)]|—s-1/2,0p[0||s51,0
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with a constant C' > 0 which does not depend on @° and v. Therefore w(a") € H*"1(D, E; 1)
and its support belongs to 0D.
Clearly, C2 (D UT,E; ) C C% (2, Eiyq) and Whitney theorem implies that every

comp comp
section from Cg;, (DUT, Ei;1) may be extended up to an element of the space Cg;,, (2, Eit1).
Thus, (18) is equivalent to the following identity:

g = Aixpu— xpf + xpw(@) =0in Q. (25)

That is why u is a solution to Problem 4.1 if and only if u € Ha, (D, E;) and the identity (25)
holds. By the very construction, g belongs to D’(€, E;;1) and its support lies in D.
Then for all v € C (Q, E;+1) we have

comp
(9, Ai11v)0 = (xpu, AT Aii1v)a — (Xpf, Ai1v)a + (xpw(@®), Ajp1v)o

(Fz’ - Fi, Az’A:“U)Q - (f> Ai+1U)D + (Ti(ﬁ0)> 5z'+1(Ai+1"U))8D =
(Ea Az’AfU)Q - (f7 AiJrlU)D + (ﬂ'(fbo)a 5i+1(Ai+1v))aDa (26)

because A7A; 11 = AjAF and A, A F;, =0 1in Q.
Further, by Lemma 3.1, we see that for all v € C2 (£, Eiyq),

comp
(Tiof, AiAjv)a = (Aixpf, Ajv)a = (f, AiAjv)p. (27)

Set 4 = P(A?)Ti(ﬂo). This section belongs to Ha,e4: (D, E;) (see Remark 2.1 and Corollary 2.3).
By the definition, 7;,(@) = 7;(to) on dD. Now Lemma 3.3, the properties of the fundamental
solutions and Definition 2.1 imply that for all v € C25 (€2, F;11) we have:

comp
(M, omi(0°), AjAfv)g = (xpi — TigAmu — A 1Ty 1 0t — K;qu, AjAfv)g =

(’I], A:AZA:U)D — (AZ’[L, AZA:U)D = —(Ti(ﬂo), 171'4_1(141'142(1))6[). (28)
Therefore, using (26), (27), (28) we conclude that

(9, Aip1v)a = —(f, AfﬂAiHU)D + (Ti(ao)a 5i+1(A§+1Ai+1U))BD =0
for all v € C

oomp(§%, Eiy1) because of condition (19).
Thus, A;;19 =0in Q and g = 0 in D*. Tt follows from Uniqueness Condition 1.1 that ¢ =0
in €, i.e. identity (18) holds. In particular this means that A;u = f in D and, by Corollary
2.5, we see that u € Ha, (D, E;), which was to be proved. Il

Corollary 4.1. Let f € H*Y(D,E;;,), u° € H* V3T, E;). The Cauchy problem 4.1 is
solvable in the space H,*(D, E;) if and only if condition (19) is fulfilled and there is a section
Fi € H*(Q, E;) satisfying A;AF; = 0 in Q and such that (F; — F;) € xp(H *(D, E;)).

Proof. Indeed, if Problem 4.1 is solvable in H (D, E;), then condition (19) is fulfilled and
Fi = F;, — xpu (see (21)). Hence, by Lemma 3.3, the section F belongs to H*(2, E;) and
(Fi — o) € xp(H(D, E})).

Back, if condition (19) is fulfilled, F; € H*(Q, E;) satisfies A;A;F; = 0in Q and (F; —F;) €
Xp(H*(D, E;)) then Problem 4.1 is solvable. Besides, one of its solutions u is given by formula
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( 24). In particular, ypu = (F; — F;) belongs to H~*(2, E;). Pick v € C*®(D, E;). Then, by
Whitney Theorem, there is a section V € C®(Q, E;) with ||V|sq = ||v||s.p and v = V in D.
By the definition,
|(w, 0)p| = [(xpu, V)al < [Ixpull-sallvllsp,

ie. u € H*(D, E;). Finally, as Aju = f € H*" (D, E;;1), then u € H,*(D, E;) according to
Corollary 2.5. O

If i = 0 then the operator A has injective principal symbol and Theorem 4.1 has the
following form (cf. [2], [12] for the operators with real analytic coefficients and f = 0).

Corollary 4.2. Let f € H(D, E,), v’ € D'(T, Ey). The Cauchy Problem 4.1 is solvable in the
space Ha, (D, Ey) if and only if condition (19) is fulfilled and there is a section Fy € H(S), Ey),
coinciding with Fy in DT and such that AgJFy = 0 in €.

Proof. If i = 0 then the operator A*, in (23) equals to zero and therefore AgFy = 0 in 2.

Back, as AgFy = 0 then the section Fy is smooth in 2. According to [2, Theorem 9.4.8]
the section Fy belongs to H (S, Ey) if and only if it has finite order of growth near 9. As
D C Q, the section F; has the same order of growth (in D) near dD. Then F; € H(D, Ej),
u=Fy —F, in H(D, Ey) and (Fy — Fo) € xp(H(D, Ey) because Fy = Fy in D™ O

In the next section we will obtain a similar result in positive degrees of the complex {A;}
over Lebesgue space L%(D, E;) choosing a canonical solution u in (22). In any case, Theorem
4.1 can be easily reformulated to be like Corollary 4.2

Corollary 4.3. The Cauchy Problem 4.1 is solvable if and only if condition (19) is fulfilled and
there is a section F; € H(Q), E;) such that (F; — F;) € xp(H(D, E;)) and A;F; co-homological
to zero in Q with respect to the complex {A;}.

Proof. It follows from Theorem 4.1 and (23) because 4; 0 A;_; = 0. O

5 The Cauchy problem in the Lebesgue space

Consider now the case s = 0. Denote ¥, the null space of the Cauchy Problem 4.1 for s = 0,
i.e. 3y consists of L?(D, E;)-sections w with A;w =0 in D and 7;(w) = 0 on T, or, the same

(w,Ajv)p=0forallve C, (DUT, E;i1). (29)

comp

Formula (29) guarantees that X is a (closed) subspace in L?(D, E;).

As the adjoint complex {A} is elliptic too we may give similar definition of weak boundary
value of a normal part (with respect to {A;}) of a section on T
Definition 5.1. We say that a section u € Ha: (D, E;), satisfying A7 ju = h in D with
h e H(D, E;_y), has a weak boundary value v;r(u) = v;(ug) on I' for ug € D'(I', E;) if

(h,9)p — (u, Ai_19)p = (*xTi—1(9), vi(uo))r for all g € CF,  (DUT, E;_y).

Theorem 5.1. Let f € H Y (D,E;;,), u* = 0. If the Cauchy Problem 4.1 is solvable in
HY (D, E;) then its unique L*(D, E;) -orthogonal to Xo solution u(f) satisfies v;r(u(f)) = 0
on T" in the sense of Definition 5.1 and Af_ju(f) =0 in D.
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Proof. Obviously, Hgi(D, E;) is a Hilbert space with the scalar product
(s )o.a; = (5 )o + (Air, Aiv) 1.

Then the orthogonal complement to ¥y in this space coincides with L?(D, E;)-orthogonal com-
plement to Y. Thus, if the Cauchy Problem 4.1 has a solution w in HY (D, E;) then its
L*(D, E;) -orthogonal projection u(f) to the orthogonal complement to ¥, is also a solution to
Problem 4.1 (it is evidently unique with the prescribed property). Clearly, any section of the
type A;_1¢, with v € C (D, E;_1), belongs to ¥y. Hence

comp

(u(f),Aizyv)p =0 for all v € CF;

comp

(Da Ei—l)a

and then Af ;u(f)=01in D.
Now, according to Corollaries 2.2 and 2.7, the section u(f) has traces of v;(u(f)) on 0D,
belonging to H~Y/2(D, E;). Hence, by Definition 5.1, the normal part v;(u)f)) vanishes on T

if and only if
(u(f), Ai—1v)p =0 for all v € C

comp(D U F, Ei—l)' (30)
Further, it follows from Corollary 2.2 that the space HY (D, E;) is the Hilbert space with the

scalar product
(': ‘)O,n = ('a ')0 + (71'77'1")—1/2-

Again we see that the orthogonal complement to ¥, in this space coincides with L*(D, E;)-
orthogonal complement to ¥j. Denote m,. the orthogonal projection on the subspace X,
consisting of sections with vanishing tangential parts on I'. Definition 2.1 guarantees that the
subspace X, is closed in H) (D, E;). As 7r(u(f)) = u® = 0 then for allv € C, (DUT, E;_)

comp
we obtain:

(u(f), Aiciv)p = (Wﬁu(f)aAiflv)O,n = (u(f)77TTrA’L'71IU)O,T¢ = (u(f), T Ai—1v) . (31)

On the other hand, for all g € C (D, E; ;1) we have:

comp
(WTFAFW,A:Q)D = (ﬂ-‘rrAifanA;'kg)O,n = (Aiflvaﬂ-‘l‘rA;kg)U,Ti = (AifW,A?g)D =0,

because A; o A;,_y = 0. Therefore A;m.A;_1v = 0 in D, and 7. A;_1v € ¥ for all v €
Cx (DUT, E;_1). Hence, formulae (30) and (31) and the fact that u(f) is orthogonal to %

comp
in L*(D, E;), imply that v;r(u(f)) =0 on I O
Corollary 5.1. Let f € H YD, E;,,), u* € H V2T, E;). If the Cauchy Problem 4.1 is
solvable in the space HY} (D, E;) then the section u(f, o) = u(f — AiP(A[;)TZ-(ﬂO)) + P(A?)Ti(ﬂo)
is also its solution satisfying v;(u(f,to)) =0 on I', Afu(f,to) = A;‘P(A?)Ti(ﬂo) in D. Besides,
if f € H:, (DUT, E;1), v’ € HEVAT, Ey) then u(f, i) € HSTN(DUT, E,), s € Z,.

oc loc loc

Proof. Let u € H) (D, E;) be a solution to Problem 4.1 with data f € H™'(D, Ej;1),
u’ € H=Y2(T, E;). Then, according to Lemma 2.1 and Remark 2.1, we have on I':

(@) = (), TPy () = 1), w(Py n(@) =o.
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Hence Problem 4.1 with data f = f — AZ-P(A?)Ti(iZO) € H™Y(D, E;;1) and 4° = 0 is solvable in
the space HY (D, E;); the section 4 = u — P(A?)Ti(ﬂo) is its solution. Therefore Theorem 5.1
implies that the section u(f, u°) is a solution to Problem 4.1 with data f € H (D, E;,1), u’ €
H~Y2(T, E;). By the construction it satisfies v;(u(f, o)) = 0 on I', A%v(f, iy) = A;“P(A?)Ti(ﬂo)
in D.

Finally, if f € H} (D UT, E;) then, using Theorem 5.1 and Lemma 2.1, we conclude that
t(u(f)) =0onT,

Aju(f) = (AT A+ A AL Du(f) = Al f € HE (D UT, E).

loc

Therefore u(f) € HS' (D UT,E;), s € Z,, because of Theorem on local improvement of
smoothness for solutions to Dirichlet Problem (see, for instance, [2, Theorem 9.3.17]). Similarly,
if u% € Hfotlm(F,Ei) then P(A?)Ti(ﬁo) € H:'' (D UT, E;) according to Remark 2.1 and |2,
Theorem 9.3.17]). Thus, u(f, @) belongs to H;' (D UT, E;), which was to be proved. O

Since Corollary 5.1 practically reduces the Cauchy Problem 4.1 to the case with zero bound-

ary data, we consider the situation in detail.

Theorem 5.2. Let A;_1, A;, Aiyy satisfy the Uniqueness Condition 1.1. If f € H (D, E; 1),
u® = 0 then Problem 4.1 is solvable in the space Hﬂi(D,Ei) if and only if Aixif =0 in D,
7i21(f) =0 on T and there is a section F; € L*(Q, E;) N Sa,(Q) coinciding with T;f in D

Proof. As u’ = 0, then F; = T;f. Moreover, by Lemma 4.1, condition (19) is equivalent to
the following two conditions: A;;1f = 0 in D and 7;.1(f) = 0 on I'. Now if there is a section
Fi € L*(Q, E;) N Sa, () coinciding with T;f in D* then (T;f)*, Ff € L*(D*, E;) N Sa, (),
(T.f — F;) € xp(L*(D, E;)) and A;A;F; = 0 in Q. Therefore, it follows from Corollary 4.1 that
Problem 4.1 is solvable in the space Hgi(D, E)if Aiy1f =0in D and 7,44(f) = 0 on I'. We
note that formulae (22) and (24) yield:

u(f) = (Tf = F;) € L*(D, Ey). (32)

Back, if Problem 4.1 is solvable in the space H) (D, E;) then A;y1f = 0in D, 741(f) =0
on I'. Moreover, the extension F;, € L*(D, E;) N Sa,a, () of the section T;f from D on
2 is given by formula (22). Putting the solution u(f) into (22) and using formula (23) and
Definition 5.1, we obtain for all v € C25 (2, E;):

comp

—(AiFiu), v)a = (xpu(f), Aic1A;_1v)a = (u(f), AisiA_v)p = (Aju(f), Ajv)p =0,
because v;r(u(f)) =0, A7_ju(f) =0in D, i.e. AjF; ) = 0in Q. O

Remark 5.1. Theorem 5.2 easily implies conditions of local solvability of the Cauchy problem
for complex {A;} in L*(D, E;) for u® = 0. Indeed, fix a point xo € T'. Let U be a (one-sided)
neighborhood of to in D and T’ = OUNT. Set F; = Tyxuf. As F; = FZ-JrTiXD\Uf we see that F;"
extends as a solution to the Laplacian A; in Q = UUTUD* if and only if the potential ﬁ’f does.
Hence, under condition (19), the solution of the Cauchy problem ezists in the neighborhood U
where the extension of the potential F;" does.
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Also we would like to note that Theorem 5.2 gives not only the solvability conditions to
Problem 4.1 but the solution itself, of course, if it exists (see (32)). It is clear that we can use
the theory of functional series (Taylor series, Laurent series, etc.) in order to get information
about extendability of the potential T." f (cf. [8], [2]). However in this paper we will use the
theory of Fourier series with respect to the bases with the double orthogonality property (cf.
[32], [2] or elsewhere). Moreover, using formula (32) we can construct approximate solutions of
problem 4.1 in the Lebesgue space L*(D, E).

Lemma 5.1. Ifw € Q is a domain with a piece-wise smooth boundary and Q\w has no compact
(connected) components then there exists an orthonormal basis {b,}22, in L*(Q, E;) N Sa, ()
such that {by,}o2, is an orthogonal basis in L*(w, E;) N Sa,(w).

Proof. In fact, these {b,}2, are eigen-functions of compact self-adjoint linear operator
R(Q,w)*R(2,w), where
R(Q,w) : L*(, E;) N Sa,(Q) — L*(w, E;) N Sa, (w)

is the natural inclusion operator (see [2] or [9, theorem 3.1]). O
Now we can use the basis {b,} in order to simplify Theorem 5.2. For this purpose fix
domains w € DT and 2 as in Lemma 5.1 and denote by

(Tif*, b)) r2w.m)

DA

CV(T%.]H_) - y Ve N,

the Fourier coefficients of T; f* with respect to the orthogonal system {b,,,} in L*(w, E;).

Corollary 5.2. Let f € H (D, E; 1), u® = 0. Problem 4.1 is solvable in the space H} (D, E;)
if and only if Ai1f =0 in D, 7,41(f) = 0 on T and and the series > oo |, (T;fT)|* converges.

Proof. Indeed, if Problem 4.1 is solvable in L?(D, E;) then, according to Theorem 5.2
condition (19) is fulfilled, and there exists a function F; € L?(2, E;) N Sa, () coinciding with
T;f" in w. By Lemma 5.1 we conclude that

Fi(x) = k(F)by(x), zeQ, (33)

where k,(F;) = (Fi,b)2,8,), v € N, are the Fourier coefficients of F; with respect to the
orthonormal basis {b,} in L?(Q, E;) N Sa,(©2). Now Bessel’s inequality implies that the series
S0 ko (F)|? converges.
Finally, the necessity of the corollary holds true because
(R, w)Fi, R, w)by)r2w,ey  (Fiy R(Q,w)* R(Q, w)by) 20,5,

WS = R )by, B )b iy o R QR )b ooy Y

Back, if the hypothesis of the corollary holds true then we invoke the Riesz-Fisher theorem.
According to it, in the space L?(2, E;) N Sa,(Q) there is a section

Fi() = c(TifHb(z), zeq. (34)

v=1
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By the construction, it coincides with T; f* in w. Therefore, using Theorem 5.2, we conclude
that Problem 4.1 is solvable in L*(D, E;). O
The examples of bases with the double orthogonality property be found in [9], [2], [32].

Let us obtain Carleman’s formula for the solution of Problem 4.1. For this purpose we
introduce the following Carleman’s kernels:

N
Q:N(yax> = (A:>;/(I)Z(yax> - ZCV((A:>;/(I)Z(Z/7 ))b,,(ill’), NeN, zeQ, Y Qw,l' % Y.

v=1

Corollary 5.3. If Problem 4.1 is solvable in L*(D, E;) for data ug = 0 and f € L*(D, E;;1) N

Hp (D UT, E;y) then u(f) belongs to HE'(D UT, E;) and the following Carleman formula
holds:
u(f)(z) = lim [ (Ex (- 2), f)y dy (35)
—oo Jp

where the limit converges in the spaces HY (D, E;) and Hjt' (D UT, E;).

loc

Proof. Since w N D = (), using Fubini Theorem we have for all v € N:

e (Tf*) = /D (o (A2, ®i(y, ). £y dy.

This exactly yields identity (35) after applying Corollary 5.2, formula (34) and regrouping the
summands in (32).

Besides, since F; and each function b, are solutions of the elliptic system A; in 2, the Stiltjes-
Vitali theorem implies that the series (34) converges in C72(S2, E;). Therefore we additionally
conclude that the limit converges to u(f) in H ' (DUT, E;) because T; f € HY(D, E;)NH; (DU
', E;) due to the transmission property (see [31]). O

Considering general complexes with smooth coefficients we arrive to the following natural
question: under what conditions on the domain D the complex {A;} is exact at the positive
degrees 7 As far as we know there is no answer in the general situation. It is known that the
formally exact differential elliptic complexes with real analytic coefficients are locally exact at
the positive degrees (see, for instance, [15], [14]). Of course, all the Hilbert complexes with
constant coefficients are exact at the positive degrees over the spaces of distrubutions in convex
domains (see, for instance, [33]. Thus we are to consider this most investigated situation.
However we emphasize that the use of the above proposed approach to the Cauchy problem for
the elliptic complexes does not involve the information on the exactness of the complex!

6 Complexes with constant coefficients

Now we are to discuss examples for complexes with constant coefficients. Actually we can say
much more, at least for domains of the special type.

Corollary 6.1. Let (3) be an elliptic first order complex with constant coefficients in R™. If
ODN\T is a part of a strictly convex domain Q D D, then for any section w € C*=(D, E;) there
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is a section h € L*(D, E; 1) NC(DUT, E;_1) such that 1;(A;_1h) = 0 on T and the following
formula holds true:

w(z) = PR xemi(w))z) + lim (@), A PO xemi(w))), dy + Aih(z),  (36)

where the limit converges in the spaces H} (D, E;) and Cio(DUT, E;).

loc

Proof. Under the hypothesis of the corollary, Problem 4.1 is solvable for the data 7; r(u) €
C=(T, E;) and A;u € C=(D, E;;). Extending 7;r(w) by zero onto all the boundary of D,
we obtain wy = xr7i(w) € L*(0D, E;). Now Corollary 5.1 implies that the section u(A;w, )
belongs to the space L*(D, E;)NC2(DUT, E;) and v = w —u(Aw, tg) € ZoNC(DUT, E;).

Denote vy the extension by zero of v from D on Q. Clearly, vy € L*(Q, E;). As 1;r(v) =0,
then A;y1v9 = 0 in  and hence there is a section he L*Q,E_y) NH. (Q,E;,_;) such that

loc

A;_1h = vy in Q (see, for instance, [33]). Set h = h — A;_y®;_sxpA* ,h. Then
Af GAi o h = Af G A gAY Jh— AT LA oxpAr sh=01n D,

Ai—lAi—lh = Ai—lA:_lAi—liL = Ai—lA;(_lv in D,
As the operator (A;_1 & Af ,)A;_; has injective symbol and

(Aifl &) A:_2)Ai,1h = (AiflA;-k_l’U, O) c CZ%OC(D U F, (EZ, EZ',Q)),

we see that h € Cpo(D UT, E;_4) satisfies A;_1h = w in D. Thus, v = u(A;w, tg) + A;—1h and
formula (36) follows from Corollary 5.3. O

At the conclusion let us consider two examples.

Example 6.1. Let (3) be the de Rham complex over R™, i.e E; be the bundle of the exterior
differential forms of the degree ¢ and A; be the differentiation operator d; for the exterior dif-
ferential forms. Choosing coordinates = = (1, ..., x,,) € R™ we have for a form v € C*(R", A"):

u = Z ur(z) dey, diu = z”: Z %(x) dx; N\ dxyp,

. - L0y
|I]=1 J=1 |I|=1¢

where I = (j1,..., ), dexy = dxj;, N--- Axj, and A is the exterior product for the differential
forms.

Let * be the Hodge operator for the differential forms (see, for instance, [15]), in particular,
dry A\ *dr; = dx. Then A; = Al;), where A is the usual Laplace operator in R"™ and Iy is
the unit k(z) x k(7)-matrix. If ®; = I; ®, where ® is the standard fundamental solution to A
of the convolution type, then M; is the Norguet integral and (16) is the the Norguet integral
formula (see, for instance, [15, §2.5]).

Let {h(j } be the set of homogeneous harmonic polynomials forming a complete orthonormal
system in the space L*(0B(0,1)) on the unit sphere dB(0,1) in R™, n > 2 (see [34, p. 453)]).
Therefore {hV| 9B(0.1) } are spherical harmonics where v is the homogeneity, j is the number of

et ey ),

the polynomial of degree v in the basis, 1 < j < J(v,n) with J(v,n) =
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J(0,n) = 1. It is easy to see that the system {h'} is orthogonal in L?(B(0, R)) for any ball
B(0, R).

Let D be a part of the unit ball 2 cut off by a hypersurface I' # 0. Then Carleman kernel
in formulae (35), (36) has the following form:

ARG hg)(y) dyr )
Cn(y, @) = #ydy @iy, ) — Z %,d, T —) W) (x) dar.

[I]=i =0 j=1

We note that the operators d; are non-zero for 0 < ¢ < n — 1 only.

Hence for n = 1 the operator dy is the usual differentiation and all the other operators d;
are identically zeros. Then the Cauchy problem for an interval D = (a,b) C R is well known:
given a distribution f on (a,b) find a distribution u on [a, b) such that

{ u'(z) = f(z), =€ (a,b),
u(a) = 0.

This problem is well-posed in the Sobolev spaces and its solution is given by the integral

:/:f(t) dt

at least for f from the Sobolev spaces of a non-negative smoothness. For elements f from the
Sobolev spaces of a negative smoothness the interpretations of the integral are also well known.

For n = 2 the Cauchy problem for the de Rham complex at the degree ¢ = 1 can be
inerpretated as follows. Let D be a bounded domain in R? and

G = {(x1,79,23) : (x1,29) €D, 0 < 23 < A} C R?

be a cylinder with the base D. If we consder GG as a bassin where the liquid behaves similarly
in every section

Dy = {(x1,22,b) : (z1,22) € D, 0 < b < A}

then the (stationary) flow of the ideal non-contractible liquid can be described by the system
of equations

Oxo ox1

w4de—_g in D,

du _w_p iy D
)
oz

where the vector u = (uy, us) corresponds to the velocity vector of the fluid and the components
h, g reflect the rotation points and the source points respectively (see, for example, [35, Ch.
I11, §2]). This exactly means

diu=fin D, dju=—gin D,
for the differential forms

w(z) = uy(v)dry + ug(x)dre, f(z) = h(z)dry Adxe, g(z)
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of the degrees 1, 2 and 0 respectively. If (n;(x),ns(x)) is the unit normal vector with respect
to 0D at the point x then

71 (u) = nouy — nyug on 9D,  vy(u) = njuy + naug on AD.

According to Theorem 5.2 the Cauchy problem for the de Rham complex in D with boundary
dataon I' C 0D, i.e.

diu=f in D,
7(u)=0 on T,
is equivalent to the following problem
dl'U = f in D,
dov=0 in D,
7(u) =0 on T,
vi(u)=0 on T.

The last one is obviously the Cauchy problem for the classical Cauchy-Riemann system with
respect to the function w(z) = ve(x1, x2) + v/ —1v1 (21, x2) With z = x1 + v/—1xo:

{ v —f/2 in D,

w =20 on I
where £ = %(6%1 + \/—_13%2). Thus, according to Hadamard’s example (see [1]) the Cauchy
problem for the de Rham complex in R? at the degree 1 is ill-posed in all the standard functional
spaces (the spaces of smooth functions, the Sobolev spaces etc.).

For n = 3 the operators dy, di, ds can be identifyed with the famuos gradient operator V,
the rotor operator rot and the divergence operator div respectively which are widely used in
Mechanics, Hydrodinamics, Electrodynamics and so on:

0 0 _9 8
851 0 ovs 81:5 0 0 0
do%V: BN s dlmrot: I 0 oz, s dgzdw:(a—xl D a—%),
0 _b 8
oxs Oxo ox1

*N_' * o~ *N_
dy ~ —div, dy~rot, dy~ -V

For instance, according to Theorem 5.2, the Cauchy problem for the de Rham complex at the
degree 1 for a domain D C R", a set I' C 9D and a datum f = (f, f2, f3) is equivalent to the
Cauchy problem for the (stationary) Maxwell type system with respect to the vector function
u = (u, ug, ug):

rotu=f in D,

divu=0 in D,

u=20 on I

We refer to [36] for applications of the theory of differential complexes to the investigation of
the Maxwell type equations.
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Example 6.2. Let (3) be the Dolbeault complex over C", i.e E; be the bundle of exterior
differential forms of bi-degree (0,7) and A; be the Cauchy-Riemann operator 9; for the exterior
differential forms. Choosing coordinates z = (2, ..., z,) with z; = z; + \/—_1xj+n, J=1...n,
and x = (21, ..., T2,) € R?™ we have for a form u € C>(C*, A(®9):

Z 1(z) dzy, 6u—zzgzl ) dZ; A dZy,
j

[I|=i J=1 |I|=i

where 6‘2 = % (% + \/—_13%%), dz; = dvj+v/—=1dzjin, I = (j1,.. ., Ji), dZr = dz;, \- - -NdZ,.

Itis Well known that xu = *u for a form u with * being the Hodge operator for the differential
forms (see [37, §14]). Then A; = 1/2 Aly;), where A is the usual Laplace operator in R*" and
Iy is the unit k(z) x k(i)-matrix. If ®; = I;) ®, where ® is the standard fundamental solution
to A of the convolution type, then M; is the Martinelli-Bochner-Koppelmann integral and (16)
is the the Martinelli-Bochner-Koppelmann integral formula (see, for instance, [38] or [15]).

Let D be a part of the unit ball {2 cut off by a hypersurface I' # 0. Then Carleman kernel
in formulae (35), (36) has the following form (see [21]):

Sl h () de -
er(6.9 = 2enic )T 3 53 *<a<<|<|2n+2u 2<2n+§u—2>> HI )

[I|l=i p=0 j=1

where {hff)} is the system of the spherical harmonics (see Example 6.1).

A result similar to Corollary 6.1 was obtained in [18, Theorem 3.1] for the Dolbeault complex
if 0D \ T is i-strictly pseudo concave hypersurface; however they had no aim to prove that the
tangential part of the rest 9;h vanished on T
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